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Abstract— Auscultation is widely applied in clinical activity,
nonetheless sound interpretation is dependent on clinician
training and experience. Heart sound features such as spatial
loudness, relative amplitude, murmurs, and localization of
each component may be indicative of pathology. In this study
we propose a segmentation algorithm to extract heart sound
components (S1 and S2) based on it’s time and frequency char-
acteristics. This algorithm takes advantage of the knowledge
of the heart cycle times (systolic and diastolic periods) and of
the spectral characteristics of each component, through wavelet
analysis. Data collected in a clinical environment, and annotated
by a clinician was used to assess algorithm’s performance. Heart
sound components were correctly identified in 99.5% of the
annotated events. S1 and S2 detection rates were 90.9% and
93.3% respectively. The median difference between annotated
and detected events was of 33.9 ms.

I. INTRODUCTION

Stethoscopes are part of the first line of screening and
diagnosis of heart pathologies, and technological develop-
ments, such as the development of the digital stethoscopes,
may improve this tool. The ability of those devices to
generate phonocardiograms (PCG), record and transmit the
heart sound, allows further processing and analysis which led
to the renaissance of the stethoscope as a first diagnosis tool
[1]. Signal processing techniques applied over the phono-
cardiogram (PCG) allow for a more in-depth perspective
on the problem of heart disease detection, by segmentation
of individual heart sound, and identification of possibly
abnormal sounds such as murmurs [2], [3], [4].

The heart cycle is usually described as being composed
by four main components: the first sound (S1), the systolic
period, the second sound (S2) and the diastolic period (Figure
1). The correct identification of heart sounds may aid in the
analysis of this signal in more detail, retrieving information
from each heart sound component, and murmurs presence
and localization. Because this information is relevant, the
correct localization of the heart sound components is im-
perative. Although PCG segmentation and feature extraction
may aid in pathology detection, the way clinicians conduct
the diagnosis process includes not only information deriving
from the auscultation, but also clinical background and
patient characteristics.
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Segmentation techniques have been thoroughly explored,
with the use of different approaches such as the aver-
age Shannon energy [5] and wavelet decomposition and
reconstruction [6], [7]. Nonetheless for higher heart rates
and noisy environments, differentiating between heart sound
components is still a challenge [8].
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Fig. 1: Phonocardiogram (PCG) representation for one pa-
tient in the study, with correspondent heart sound compo-
nents delimited: S1, S2, systolic (S72), diastolic (S21) and
heart cycle (S11) periods.

In this study we focus on the development of a seg-
mentation algorithm, retrieving S1 and S2 localizations, for
implementation in a real-time clinical decision-support tool.
The proposed method provides a robust heart rate estimate
prior segmentation based on singular value decomposition,
and refines global heart sound localizations based on time
and frequency characteristics of the heart sound through
adequate wavelet sub-bands.

II. MOTIVATION: THE DIGISCOPE PROJECT

The goal of this work is to provide a robust segmentation
algorithm for S1 and S2 identification, in realistic clinical
environments. We aim to implement it in a PCG collector
in clinical usage, within the DigiScope project [9], a project
with the objective of providing a tool for PCG and clinical
data collection, and signal processing combined with data
mining techniques for clinical decision support.

The data used in this study was collected in the Real
Hospital Portugués de Beneficéncia, Brazil, anonymized and
shipped to Portugal with the approval of the RHP Ethics
Commitee. The Ethics Committee of the University of Porto,
Portugal approved this study.

Data collected with a Littmann® 3200 electronic stetho-
scope, and the DigiScope Collector presented in Figure 2.
This was the data used in the construction of the Pascal
Challenge data set later described [10].

III. METHODS

The segmentation algorithm here proposed retrieves the
information on heart sounds localization, and classification



Fig. 2: Prototype of the DigiScope Collector system, com-
posed by a tablet and an electronic stethoscope Littmann®
3200.

into its sub-components, for data collected in the clinical
environment.

A. Segmentation Algorithm

The proposed segmentation algorithm can be described in
five sequential stages as presented in Figure 3: pre-processing
of the heart sound; filtered envelope extraction; heart rate
estimation; heart sound candidates identification and pre-
classification; classification refinement. Each stage will be
detailed below.
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Fig. 3: Segmentation algorithm procedure in five sequential
steps: pre-processing, envelope retrieval, heart rate estima-
tion, heart sound classification, and classification refinement.

1) Data Pre-Processing: The pre-processing of the PCG
includes the decimation of the original signal to 2kHz,
normalization, and filtering with a band-pass, zero-phase,
Butterworth filter order 6 (25-900Hz)) to eliminate out of
band noise.

2) Filtered Envelope: To obtain the signal envelope, with
limited influence of impulse noise and highlighting S1 and
S2, an order 6 Daubechies wavelet was used on the pre-
processed PCG, to extract the approximation and detail
coefficients at level 4 [8] given by ¢4 4(i) and ¢q4(7)
respectively. The approximation coefficients were normalized
and then used to obtain an average Shannon Energy envelope,
due to its non-linear relation between amplitude and energy
[5], and given by (1).
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where ¢, 4(i) = ¢q,4(i)/ max; |¢q,4(i)| are the normalized
approximation coefficients.

The contour envelope of the former is calculated using
only the interpolated energy peaks within a time range of 40
ms, as represented in Figure 4, providing a smooth maximum
energy envelope for further processing. The proposed enve-
lope gives a smooth version of the signal contour, allowing
a more robust estimation of heart rate through singular value
decomposition (SVD), as described in the next section.
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Fig. 4: Representation of the pre-processed phonocardiogram
on top, and respective energy envelope below, for one of the
sound segments of the study.

3) Heart Rate Estimation: Regarding the time span of
PCG collection and acquisition conditions, one may assume
that the heart rate is almost stationary in each segment. This
may be assumed since usually during an auscultation the
patient is at rest, the sound segments are relatively short, and
fluctuations due to the respiratory cycle may be disregarded
in terms of heart cycle duration estimation. To infer the
expected localization of each heart cycle, we estimate the
heart rate for each segment using the contour envelope
described in the previous section, down-sampled by a factor
of 10, to achieve a compromise between computation time
of the SVD ratio and heart rate resolution.

In pediatric patients the heart rate range is larger than in
adults, therefore to estimate it time windows varying from
400 to 1700 ms were used (35-150 beats/min). For each heart
cycle length, a moving window over the PCG signal is used
to construct a matrix A containing one segment in each row,
and then proceed to singular value decomposition, extracting
the two singular values to produce the ratio Sg, as given by
(2) and (3) [8].
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The heart rate is estimated based on the window size with
maximum Sg.

4) S1/S2 Candidates: Using the approximation Shannon
energy envelope, we employ a peak-picking algorithm to
search for candidates of heart sounds, with some physio-
logical inspired constraints: peaks would only be considered
if they were at least with a spacing of 150ms from their
neighboring peaks to ensure that heart sound splits were not
erroneously detected (lower energy peaks are discarded). We
only select as candidates peaks with energy superior to at



least 30% the median of the total energy envelope peaks.
This ensures that most of the spurious peaks are not detected,
and that other artifacts would not interfere on peak detection.

Based on heart physiology a simple rule to classify the
detected heart sounds was applied, considering that the
systolic period (Si2) is longer than the diastolic period
(S21). For higher heart rates this rule may not stand since
S12 and S3; tend to become closer leading to erroneous
classifications (also a problem in the presence of noise).
This is the motivation for the following section, leveraging
the further knowledge on the spectral characteristics of the
heart sound components and heart rate to re-classify each
candidate.

5) Classification Refinement: We propose a refinement to
our classifier based on the spectral characteristics of the
heart sound, since the S2 component tends to exhibit a
higher frequency content than the S1 component [11]. This
characteristic coupled with the heart rate estimate is the
basis for the refined classification. For each heart cycle, the
algorithm reclassifies candidates based on signal’s relative
energy distribution through details at levels 3 (¢q,3(7)) and
4 (¢a4(2)) [12]. For these sub-bands the S2 component
exhibits higher energy when compared to S1, allowing their
separation.

IV. PERFORMANCE ASSESSMENT

To validate and assess the segmentation algorithm per-
formance, we use annotated data from the Pascal challenge
"Classifying Heart Sounds Challenge’ (Btraining_-normal
dataset) [10]. This database includes PCGs from pediatric
patients, with corresponding annotations for the S1 and S2
components. Segmentation results were retrieved for each
heart sound and compared to the annotations provided.
Having data from children to test the algorithm performance
poses an additional challenge due to the high heart rates. In
this study 84 heart sound segments were used (639 S1 and
630 S2 annotations, 6 segments discarded), with time range
between 1.2 and 14.7s (416 total).

A. PCG Segmentation Evaluation

Figure 5a presents the results for one of the sound seg-
ments studied, with correspondent estimated heart rate, and
where it is evident the difference between Sio and Spq,
leading to the generation of two clusters correspondent to
S1 and S2 events. However, in Figure 5b we may observe a
case where S12 and S5; are similar, and a simple time-based
rule would not be enough to accurately classify events, and
were a frequency inspired rule accurately detects the S1 and
S2 components.

Heart rate estimation through (2) and (3) was crossed with
the heart rate estimation using the annotated S1 and S2 (S5
and So; intervals). Figure 6a shows the relation between the
two, demonstrating an accurate estimation of the heart rate
via SVD, although some outliers occur. These outliers occur
for higher heart rates and similar envelopes, leading to an
estimate that is a multiple of the real heart rate. This effect
was corrected by checking the estimated heart cycles against
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Fig. 5: Experimental results of segmentation: on left repre-
sentation of the phonocardiogram, with respective estimated
heart rate (HR) and heart sounds localizations (S1 circle, S2
square); on right, representation of the time intervals between
adjacent heart sound candidates retrieved clusters (7; time of
detected candidate 7).
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Fig. 6: Representation of estimated heart rate (HR) through
singular value decomposition (SVD) versus HR estimation
based on Si2 and Ss; intervals (clinician annotations), and
respective robust linear regression.

the number of detected peaks. If the number of candidates is
similar to the estimated heart cycles than the heart rate would
be corrected. Figure 6b shows the corrected SVD estimate
demonstrating a strong correlation between the estimated and
the annotated heart rate (p=0.85, P<0.001).

Table I shows the classification results considering each
heart sound component, pre and post-refinement. The pro-
posed contour envelope allowed the successful detection
of 99.5% of the annotated heart sounds. We may observe
that the algorithm performance was improved significantly
after refinement based on spectral characteristics of each
candidate.

TABLE I: Experimental results of the proposed segmentation
methodology in the Pascal Challenge database [10].

Time Based Refined
# Annotated | # Detected | Rate% # Detected | Rate%
S1 639 523 81.9 581 90.9
S2 630 517 82.1 588 93.3
Total 1269 1040 82.0 1169 92.1




We also used the metric defined in the Pascal Challenge
to calculate the error in S1 and S2 segmentation,
Nk/2
Z (ITs1,i = Ts1il) + (| Ts2,6 — Ts2.4])
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where ¢, denotes the average distance of the k-th sound clip
in the dataset. IV}, is the total number of S1 and S2 in the k-th
sound clip. T's1,; and Ts3 ; indicates the real localization of
S1 and S2 of the ¢-th heatbeat and fgu and fgg,i indicates
the calculated localization of S1 and S2 of the ¢-th heatbeat.
Np is the total of sound clips in the dataset. Finally, 0 is the
total error.

The proposed approach achieves an accumulated error §
of 15267.5 samples (sum of the average number of samples
deviation (dg), at a sampling rate of 4000 Hz) [10]. Median
distance between annotated and detected heart sounds was
of 33.9 ms.

V. DISCUSSION

The first step in the detection of heart pathologies through
auscultation is to distinguish the different sub-components
of the PCG, and extract clinically relevant features. In
this study we propose a new methodology for heart sound
segmentation, that demonstrated good results in detecting
the PCG sub-components, even in pediatric patients, without
the need of an external biomedical signal (electrocardiogram
e.g.).

Our method showed 99.5% agreement when compared to
clinically annotated heart sounds, with 90.9% and 93.3%
detection rates for S1 and S2 components respectively. A
robust estimation of the heart rate through SVD is proposed,
demonstrating high correlation between the SVD estimation
and the annotated S1o and So; intervals. A downsampled
contour envelope was used to achieve a compromise between
computation time and heart rate estimation resolution with
good results (p=0.85). This information combined with the
knowledge of heart sound physiology allowed an accurate
detection of each heart sound component. Using solely a
time-based rule is not sufficient in the presence of higher
heart rates as presented in previous studies [5], [6], and a
rule based on signal’s relative energy distribution over the
wavelet transform sub-bands of interest demonstrated to be
a good estimate of the S2 higher frequency content when
compared to S1 [11].

The algorithm performance was also evaluated in terms
of the accumulated average distance between clinical anno-
tation and detected events in each sound segment, with a
median distance of 33.9ms between annotated events and
the markers retrieved [10].

VI. CONCLUSIONS

A new methodology to segment the heart sound is pro-
posed, with 92.1% accurate detection. Some problems were
identified and need to be addressed in the future, such as
the existence of low energy events that were not detected,
and also some spurious events detected as heart sounds and
misclassified in the presence of ambient noise. Performance
of the method in pathological conditions also needs to be
evaluated in future studies.
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