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Abstract— The digital analysis of heart sounds has revealed
itself as an evolving field of study. In recent years, numerous
approaches to create decision support systems were attempted.
This paper proposes two novel algorithms: one for the seg-
mentation of heart sounds into heart cycles and another for
detecting heart murmurs. The segmentation algorithm, based
on the autocorrelation function to find the periodic components
of the PCG signal had a sensitivity and positive predictive
value of 89.2% and 98.6%, respectively. The murmur detection
algorithm is based on features collected from different domains
and was evaluated in two ways: a random division between
train and test set and a division according to patients. The
first returned sensitivity and specificity of 98.42% and 97.21%
respectively for a minimum error of 2.19%. The second division
had a far worse performance with a minimum error of 33.65%.
The operating point was chosen at sensitivity 69.67% and a
specificity 46.91% for a total error of 38.90% by varying the
percentage of segments classified as murmurs needed for a
positive murmur classification.

I. INTRODUCTION

The heart, center of the cardiovascular system, is respon-
sible for pumping blood to every vital organ of the human
body and its correct functioning is therefore of paramount
importance. To fulfill its function, the heart follows a series
of coordinated movements known as the heart cycle, which
can be separated as the systole (muscle contraction) and the
diastole (muscle relaxation). A distinctive sound, lub-dub, is
produced by these movements, and its graphical representa-
tion is known as the phonocardiogram (PCG). This sound
can however be modified by a number of cardiopathies,
producing heart murmurs. These murmurs can be either
pathological or innocent and arise differently depending on
their origin. 50-70% of children have a murmur (most of
these are innocent) and 2-5% of adults have or will eventually
have a pathological valvular murmur [1]–[3]. Several tools
exist in the clinical environment to confront the problem
of murmur detection. Cardiac auscultation through the use
of the stethoscope is the most common technique however
it is highly subjective and is dependent on a lengthy and
continuous training. Echocardiography, despite its higher
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precision, is not available everywhere and is associated with
higher costs and patient stress. Computer-aided auscultation
would then allow faster and cheaper decisions by using
a tool widely known by both physicians and patients: the
stethoscope. The main goal of this work is to design a robust
algorithm capable of segmenting a PCG signal into heart
cycles and also able to detect murmurs within those cycles,
independent of other sources of information.

II. RELATED WORK

Computer-aided auscultation has been a subject of re-
search for some time and many different methods have been
applied to solve this problematic. PCG signal processing
can be crudely divided into two main research areas. One
is focused in the detection of events such as S1 and S2
to perform the segmentation of the PCG. The other is the
detection of murmurs and, consequently, of cardiac patholo-
gies. However, because both objectives are interconnected
and are accomplished from the same base signal, they share
the same basic signal processing tools. These tools range,
nevertheless, a large amount of techniques from the most
simple to some utterly complex [4]. On the subject of heart
sound segmentation, El-Segaier developed a method based on
ECG gating. This method uses the simultaneous acquisition
of PCG and ECG signals. Using the temporal relations
between the PCG and ECG, intervals of search for S1 and
S2 were defined and the maximum in the spectrum in each
of those intervals was defined as S1 or S2 [5]. The work
from Oskiper and Watrous [6] also uses the ECG as auxiliary
signal to train two time-delay neural networks to accomplish
the segmentation task. These neural networks may then be
applied without the aid of the ECG signal. The work from
Liang et al. designed a segmentation algorithm dependent on
the Shannon energy envelope1. A threshold is set to select
the peaks from such envelope [7]. The works in [8] and
[9] developed a methods based both on time domain and
time-frequency analysis. A specific function was designed to
be sensitive to high amplitudes and the specific frequencies
of the main heart sounds [8] and an algorithm using self-
organizing probabilistic maps was developed in [9]. Table I
summarizes the results from the aforementioned works.

Regarding murmur detection, the common practice found
in the literature is the following: a number of features are
extracted from the interval of interest (systole or diastole)
and they are introduced into a classifier for training and

1For a given signal x(t), its Shannon energy envelope E is defined as
E = −x2(t) log x2(t).



TABLE I
SEGMENTATION ALGORITHMS

Ref # Analysis Auxiliary Sensitivity PPV
Used Signals

[5] T; TF ECG 100%(S1), 97%(S2) -
[6] T;TF ECG (training) 98.4% 97.8%
[7] T - 94.11% 98.76%
[8] T; TF - 99% 98.6%
[9] T;TF - 98.4% 96.7%

T- time domain; TF- time- frequency domain analysis

testing to find a performance value. The type of features
extracted from the signals range from time domain and
time-frequency domain such as in [10] to complexity ones
from the works develop by Kumar et al. in [11], [12]. A
wider feature analysis was conducted by Delgado-Trejos
using time domain, time-frequency domain, perceptual and
nonlinear features obtaining an overall accuracy of 96.11%
[13]. Table II summarizes the results for these references.

TABLE II
MURMUR DETECTION ALGORITHMS

Ref # Analysis Results
Used

[10] T; TF 86% accuracy
[11] NLC 91.09% sensitivity, 95.25% specificity
[12] TF;NLC 89.1% sensitivity, 95.5% specificity
[13] TF;P;NLC 96.11% accuracy

T- time domain; TF- time- frequency domain; P- Perceptual analysis;
NLC- nonlinear and chaos based analysis

III. METHODOLOGY

Our approach is composed by two phases: 1) the main
heart sounds are identified so that the signal is separated into
systolic and diastolic segments; 2) each segment is subjected
to a classifier to determine the presence of a murmur.

A. Heart Sound Segmentation

As the rest of the detection algorithm is dependent of a
precise segmentation, this stage needs to be as robust as
possible and not only identify the correct sounds but also
correctly classify them as S1 and S2. The segmentation
algorithm designed is mainly based in the autocorrelation
function to find the periodic components of the PCG signal.

First of all, a pre-processing routine is applied composed
of continuous wavelet denoising using the Morlet mother
wavelet with scales corresponding to frequencies of 15-
150Hz. This mother wavelet was chosen as it has been proven
to be the most effective for continuous wavelet transform
for PCG analysis [14]. The remaining signal is converted
to its energy envelope, normalized and decimated to obtain
a smooth envelope. Secondly, the PCG is divided into 1.5s
segments and a mean amplitude criterion is used to discard
segments with high amplitude noise. This segment length
was chosen to allow for a full heart cycle to be present
at every segment. The periodic elements of the remaining
segments are then detected using the autocorrelation function
and the systole length is estimated according to the ACF

peaks as shown in Figure 1. Finally, the heart sounds detected
using the estimated systole length are classified into S1 or
S2. While this is fairly easy in most cases as the systole is
normally shorter than the diastole, in children and adults with
higher heart rates systoles and diastoles are approximately
of the same length. Non-duration based criteria such as the
differences between the frequency spectra shape of the main
heart sounds [15] must then be used.

Fig. 1. Example of a summed ACF and segment with identified intervals
for an estimation equal to the systole.

B. Feature Extraction for Murmur Detection

A total of 250 features were extracted from each segment
to classify as presenting murmur or not. These features
were extracted from different analysis domains to ensure the
segments were described as thoroughly as possible. Time
domain analysis was chosen as it allows the study of the
amplitude in the systole, which is altered in the presence
of a murmur. The time domain features extracted were
obtained with the Shannon energy values for seven different
locations in a PCG segment. A time-frequency analysis was
also used to identify the correct frequency spectrum of the
murmurs and distinguish them from noisy events. Fifty-five
features were extracted from each segment using the DWT.
The first five level detail coefficients were obtained with
the Daubechies 1 mother wavelet. The mean and Shannon
energy of each segment was obtained. Finally, the ratio
between the minimum Shannon energy and the maximum
between levels returned the last feature. This was done for
five different sections of the segment: the whole segment,
the whole segment except for the S1 and S2 and each of
the thirds of the segment after removing the S1 and S2.
Thirteen features were generated using the CWT. The Morlet
mother wavelet was used to obtain the CWT of the PCG with
scales encompassing the frequencies from 200Hz to 700Hz.
Figure 2 shows how some time domain and time-frequency
domain features are extracted from the PCG. This frequency
range was chosen to remove any low or high frequency
components and maintain the murmur bandwidth. Singular
value decomposition (SVD) was then applied to each PCG
segment. The eight largest eigenvalues of the TFR matrix
were considered as features. The eigentimes and eigenfre-
quencies corresponding to the two largest eigenvalues were



Fig. 2. a) PCG segment with heart sound components S1, S2 and
systolic murmur marked; b) corresponding Shannon energy and the seven
points considered as features; c) corresponding CWT obtained with scales
encompassing 200Hz to 700Hz with points used for features extraction
marked. Details on the feature extraction can be found in [16].

also used as features by applying a histogram (10 bins) to
each of the eigenvectors probability density function. This
returned ten features for each eigenvector for a total of 48
features generated by SVD from each segment [10].

Perceptual analysis using mel-frequency cepstral coef-
ficients (MFCC) is a tool that perceives frequency in a
logarithmic fashion emulating the behavior of the human ear.
The PCG sections used for MFCC extraction were the same
ones used to extract the DWT features. A total of 20 MFCC
coefficients per section were extracted resulting in the total
of 100 features from the perceptual analysis domain.

Murmurs are the highest complexity events in a PCG. This
makes a nonlinear study of the PCG a promising tool for
murmur detection, as the presence of a murmur will raise
the overall complexity of a PCG [10], [13]. The bispectrum,
a common higher order statistics, was used to extract features
from the PCG regarding its nonlinear interactions. Other
analysis such as Variance Fractal Dimension and Lyapunov
Exponents were performed to study the complexity and
chaoticity of the PCG signal.

Table III shows the features extracted as well as its
amount. A k-means classifier was trained using these 250
features to classify the segments. A sequential forward fea-
ture selection (SFFS) algorithm was also used to determine
the optimal feature set consisting of 167 features. As the
classifier evaluates each segment, a threshold was applied to
the fraction of segments classified as presenting murmur to
define whether or not a patient had a murmur.

IV. RESULTS

A. Databases

To evaluate the performance of the designed algorithms
two different databases were used. The DigiScope database

TABLE III
FEATURES EXTRACTED FOR MURMUR DETECTION

Feature Name Amount
Shannon Energy 7
Continuous Wavelet Transform 13
Discrete Wavelet Transform 55
Singular Value Decomposition 48
Mel-Frequency Cepstrum Coefficients 100
Bispectrum 16
Variance Fractal Dimension 9
Lyapunov Exponents 2
Total 250

was collected in the Real Hospital Português in Recife, Brasil
using a Littmann 3200 stethoscope and consists on a total
of 72 signals. This stethoscope was used with the DigiS-
cope prototype developed within the homonymous project to
collect, transmit and record heart sounds without interfering
with clinical routine. All the sound samples were collected
in the clinical environment with lengths under one minute.
The selected procedure was to sequentially auscultate all four
main auscultation spots (aortic, pulmonary, mitral and tricus-
pid). Each physician was given the freedom to decide how
much time to spend on each spot depending on whether there
was something particular, as they would do if examining the
patient in a normal situation. Physicians were also instructed
to make no additional effort to find a quiet environment
for signal acquisition. The patients auscultated were of ages
comprised from six months to 17 years old. The presence
of murmurs and its temporal localization (systole/diastole)
is annotated but the main heart sounds are not. To test and
validate the heart cycle segmentation the PASCAL CHSC
2011 database [17] was used. Only a section of the database
comprised of 111 signals of varying lengths between 1 and
30 seconds was used. This section is uniquely composed of
signals without murmur and the signals have very little noise.
The ages of the patients auscultated are not specified. Both
databases are summarized in Table IV.

TABLE IV
DATABASES

Database Number Duration of Labelled Labelled
of Signals Signals S1/S2 Murmurs

Digiscope 72 ≈ 1 min No Yes
Pascal [17] 111 1-30 s Yes No

To assess the performance of the heart sound segmenta-
tion algorithm three different measurements were used. The
first two, the sensitivity and the positive predictive value
(PPV) are widely used as was reported in Section II. The
sensitivity evaluates the proportion of heart sounds that are
found whereas the PPV will evaluate the proportion of the
events identified that are actually heart sounds. An additional
measurement δ was also used to determine the temporal
precision of such detections and is described in [17].

B. Heart Sound Segmentation Results

A sensitivity of 89.2% and a positive predictive value of
98.6% were obtained and δ = 9.8 ms. When comparing the



proposed segmentation algorithm performance with the ones
listed in Table I it has a lower sensitivity than any other
method. However, a few things must be taken into consider-
ation. First of all, different databases were used in each study
and consequently direct comparisons are always subjective.
Secondly, the segmentation algorithm was designed for a
different database than the one used for testing. This would
not be a big problem except for the size of the PCG signals
that, as mentioned earlier, hinder the heart rate estimation
process. Furthermore, the goal of the designed algorithm
must be taken into account. Unlike the algorithms in Table
I, the ultimate goal of our segmentation algorithm is not
only to identify the heart sounds but also to discard noisy
regions even if the algorithm is able to pinpoint the exact
locations of the heart sounds in these regions. This design
was implemented because the priority was to infer in the
presence of murmur and not the perfect segmentation of the
signal. The average deviation of 9.8 ms is a small deviation
given that the average duration of the main heart sounds is
of approximately 100 ms.

C. Murmur Detection Results

The performance of the trained classifier was evaluated
using two different approaches. The first approach was
conducted by performing a random train-test division dis-
regarding the patient to whom each segment originated. A
minimum error of 4.65% was obtained using the whole
feature set and a minimum error of 2.19% was obtained
for the optimal subset of 167 features. These values are
well within the range of those found in literature where
the same train-test division was used. This approach does
not, however, consider the interpatient variability as segments
from the same patient are present in the train and test set.
The second approach divides train-test sets at a patient-level.
In both cases the dataset was randomly divided into train and
test sets in a 60-40 ratio. As expected, the error is much larger
than in the previous division: 35.5% for the whole set of
features and 33.65% for the optimal subset. This is the error
that should be expected when classifying a new patient due
to the patient variability that exists even in patients with the
same pathology. This effect is augmented even further due to
the fact that the database used is relatively small and due to
the noise present in the signals. The sensitivity and specificity
of the trained classifier returned values at this maximum
accuracy operating point of 52.38% and 79.40% respectively.
By changing the patient threshold, the operating point was
changed to a sensitivity of 69.67% and specificity of 46.91%
to ensure a greater amount of murmur cases detected at a cost
of increasing the total error to 38.9%.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel algorithm for the digital
analysis of heart sounds and detection of murmurs, with
promising results. Given the motivation of this paper it is
important to compare the obtained values to the accuracy
levels of general practitioners. Lam et al. conducted a
study that, among other things, evaluated the accuracy of

physician trainees in the detection of murmurs obtaining
accuracy values of 79.2% and 67% for pan-systolic and
ejection systolic murmurs respectively [18]. By comparison
to the obtained accuracy and sensitivity values of 61.1% and
69.67% respectively, one sees that it is within the range
of the values obtained in Lam et al. for the physicians
normal performance. To make a difference in the clinical
environment, a murmur detection algorithm should however
have a superior accuracy to that of trainees. To achieve
this, different features should be experimented to obtain
an optimal feature set. Furthermore, one must enlarge the
database to diminish the effect of interpatient variability.
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