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Abstract—In this paper we propose a linearly constrained
minimum variance receiver for space-time coded multicarrier
(MC) CDMA system in frequency selective fading channels.
It is shown that in the proposed receiver the channel can be
blindly estimated as the eigenvector that corresponds to the
maximum eigenvalue of an autocorrelation matrix, and then,
efficient algorithms for subspace tracking can be used. Computer
simulations indicated that the proposed channel estimation algo-
rithm achieves performance comparable to traditional algorithms
with less computational cost.

I. I NTRODUCTION

An important challenge for fourth generation systems is
the selection of an appropriate multiple access scheme which
provides the data transmission at rates of100 Mb/s for high–
mobility applications to1 Gb/s for low–mobility applications
[1] and high spectrum efficiency up to10 b/s/Hz [2]. Two
technologies are the keys to meet these requirements. The
first one is the use of multicarrier (MC) transmission systems
in a multiple access scheme, such as code division multiple
access (MC-CDMA). The second technology is the so-called
multiple-input multiple-output (MIMO) systems which has
gained a lot of attention as an effective diversity technique
to combat fading and/or increase the capacity of wireless
networks [1], [3]. One of such techniques is the Alamouti
space-time coding [4] which uses two transmit and multiple
receive antennas.

Blind adaptive linear receivers are promising techniques for
interference suppression in CDMA systems, as they offer an
attractive trade-off between performance and complexity and
can be used in situations where a receiver loses track of the
desired signal and a training sequence is not available. A blind
adaptive detector for space-time single carrier direct sequence
(DS) CDMA systems in flat fading channels was introduced
in [5]. It uses a Capon-like structure and requires only the
knowledge of the spreading code and timing of the user to
perform the detection. In [6] a constrained constant modulus
receiver for the frequency selective channel case is proposed.

In this work we propose a constrained minimum vari-
ance receiver for space-time multicarrier CDMA system in
frequency selective channels that incorporates a new blind
channel estimation algorithm. It is shown that the channel
can be blindly estimated as the eigenvector that corresponds

to the maximum eigenvalue of an autocorrelation matrix,
and then, efficient algorithms for subspace tracking can be
used. Through computer simulations it is shown that the
proposed channel estimation algorithm achieves performance
comparable to traditional algorithms with less computational
cost.

This paper is structured as follows. Section II describes
the space-time MC-CDMA system model. In Section III the
proposed constrained minimum variance receiver is introduced
and in Section IV a recursive least squares implementation is
presented. The new channel estimation algorithm and an effi-
cient implementation is shown in Section V. Some simulation
experiments are presented in Section VI, while Section VII
gives the conclusions.

II. SYSTEM MODEL

A discrete model of a MC-CDMA space-time block coded
system employing Alamouti’s [4] scheme operating in fre-
quency selective channels is depicted in Fig. 1. This scheme
uses two transmit antennas andN receive antennas.
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Figure 1. Alamouti MC-CDMA transmission system.

Alamouti MC-CDMA proceeds as follows. The symbols
are first space-time coded by the space-time encoder,Xk(i),
which maps the symbols of userk according to:

Xk(i) =
√

ρk

[
sk(2i) −s∗k(2i + 1)

sk(2i + 1) s∗k(2i)

]
(1)



whereρk = Ek/2, Ek is the transmitted energy for userk, and
(·)∗ denotes complex conjugate. It is assumed that symbols
sk(i), drawn from some constellation with zero mean and
unit average symbol energy, are independent and identically
distributed (i.i.d.). Different rows ofXk(i) refer to different
branches of the transmitter (see Fig. 1) whereas different
columns refer to different symbol periods.

Two spreading codes ofM binary chips per symbol are
assigned to each user, one for each row ofXk(i). Each spread
symbol is modulated in multicarrier fashion by theM × M
matrixFM that implements aM -point DFT, normalized such
that,FH

MFM = FMF
H
M = IM . After that, in order to avoid

interblock interference (IBI) at the receiver, a cyclic prefix
guard interval of lengthG is inserted,G must be at least the
channel order. This operation is represented by aP×M matrix
T :

T =

[
0G×M−G | IG

IM

]

whereP = M + G, Im represents am × m identity matrix
and 0m×n represents anm × n null matrix. Finally, each
block is serialized and transmitted through antennaTX1 or
TX2, according toXk(i).

The channel impulse response from thej-th (j = 1, 2)
transmitter to then-th (n = 1, 2, . . . , N) antenna in the
receiver,hjn(i), is modelled here as a FIR filter withL taps
whose gains are samples of the channel impulse response
complex envelope.

Assuming that during two symbol periods each multipath
channel impulse response remains constant, that is,hjn(2i) =
hjn(2i + 1) = [hjn,0(2i) . . . hjn,L−1(2i)]

T , the transmission
through the multipath channel can be represented by aP ×P
lower triangular Toeplitz convolution matrixHjn(2i), whose
first column is[hjn,0(2i) . . . hjn,L−1(2i) 0 . . . 0]T .

As we consider a downlink scenario, where the signal for
the users experience the same channel conditions, the received
vectors collected on then-th antenna over two consecutive
symbol periods are

yn(2i) = H1n(2i)TFH
M

K∑

k=1

√
ρkc1ksk(2i)

+H2n(2i)TFH
M

K∑

k=1

√
ρkc2ksk(2i + 1)

+nn(2i) + ηn(2i) (2)

yn(2i + 1) = −H1n(2i)TFH
M

K∑

k=1

√
ρkc1ks∗k(2i + 1)

+H2n(2i)TFH
M

K∑

k=1

√
ρkc2ks∗k(2i)

+nn(2i + 1) + ηn(2i + 1) (3)

wherenn(i) is a complex white Gaussian noise vector whose
covariance matrixE

[
nn(i)nH

n (i)
]

= σ2IP and ηn(i) rep-
resents the interblock interference (IBI). The operators(·)H

andE [·] stands for Hermitian transpose and ensemble average,
respectively.

The receiver must remove the guard interval from the
received signal to eliminate IBI. This removal is represented by
the matrixR = [0M×G| IM ]. The received column vectors
rn(2i) = Ryn(2i) and rn(2i + 1) = Ry∗

n(2i + 1) can be
rewrite in compact form by noting that

RHjn(2i)TFH
M cjk = Vjkhjn (4)

where Vjk = FH
M diag(cjk)F̃M×L, diag(x) is a diagonal

matrix with the components ofx as its nonzero elements, and
F̃M×L is a M × L matrix formed with the firstL columns
of the matrix that implements the (non-normalized)M -point
DFT. Equation (4) comes from the fact that when cyclic prefix
is used as guard interval,RHjn(2i)T is a circulant ma-
trix and can be decomposed asFH

M diag(h̃jn(2i))FM , where
h̃jn(2i) is the frequency response of the channelhjn(2i), i.e.,
h̃jn(2i) = F̃M×Lhjn(2i).

Then,

rn(2i) =
K∑

k=1

√
ρk[V1kh1n(2i)sk(2i)

+V2kh2n(2i)sk(2i + 1)] + nn(2i) (5)

rn(2i + 1) =

K∑

k=1

√
ρk[−V ∗

1kh
∗
1n(2i)sk(2i + 1)

+V ∗
2kh

∗
2n(2i)sk(2i)] + n∗

n(2i + 1) (6)

Stacking all the column vectorsrn(2i) andrn(2i+1), n =
1, · · · , N , we get the observation vector

r(i) =




r1(2i)
r1(2i + 1)

...
rN (2i)

rN (2i + 1)




=

K∑

k=1

√
ρk

{
Ψkh(i)sk(2i) + Ψ̃kh

∗(i)sk(2i + 1)
}

+n̄(i) (7)

where

Ψk = IN ⊗
[

V1k 0M×L

0M×L V ∗
2k

]
(8)

Ψ̃k = IN ⊗
[

0M×L V2k

−V ∗
1k 0M×L

]
(9)

and the2LN dimensional vector

h(i) =




h11(2i)
h∗

21(2i)
...

h1N (2i)
h∗

2N (2i)




, (10)

which we call the composed channel.



III. L INEARLY CONSTRAINED M INIMUM VARIANCE

RECEIVERS

In the following, we assume without lost of generality that
user one is desired and drop the user index,k. The design of
the receiver filtersw = [w w̃] ∈ C2MN×2, based on the
minimum variance (MV) criterion uses the output energy as a
cost function to be minimized:

JMV (w) = tr[wHRrrw]

= wHRrrw + w̃HRrrw̃ (11)

whereRrr = E
[
r(i)rH(i)

]
and tr[·] stands for trace.

In order to avoid the trivial solution,w = 0 and anchor the
desired user signal,w is subject to a set of constraints

Ψ
H
w = ĥ

Ψ̃
Hw̃ = ĥ∗ (12)

whereĥ is an estimate of the composed channel (10).
Using the method of Lagrange multipliers, the optimum

receiver vector is obtained as

wopt = R−1
rr Ψ(Ψ

H
R−1

rr Ψ)−1ĥ

w̃opt = R−1
rr Ψ̃(Ψ̃HR−1

rr Ψ̃)−1ĥ∗ (13)

and the resulting output variance, givenĥ, is

JMV (wopt) = ĥH(Ψ
H
R−1

rr Ψ)−1ĥ

+ĥT (Ψ̃HR−1
rr Ψ̃)−1ĥ∗, (14)

The optimization of the channel estimate maximizes (14) as

ĥopt = arg max
‖ĥ‖=1

{
ĥH

(
Ψ

H
R−1

rr Ψ

)−1

ĥ

+ĥT
(
Ψ̃

HR−1
rr Ψ̃

)−1

ĥ∗

}
. (15)

Using the fact thatĥT (Ψ̃HR−1
rr Ψ̃)−1ĥ∗ is real valued

and taking into account the conjugate symmetric properties
induced by space-time block codes [5],ĥopt can be estimated
simply by

ĥopt = arg max
‖ĥ‖=1

ĥH
(
Ψ

H
R−1

rr Ψ

)−1

ĥ. (16)

whose solution is the eigenvector corresponding to the maxi-

mum eigenvalue of
(
Ψ

H
R−1

rr Ψ

)−1

or to the minimum eigen-

value ofΨ
H
R−1

rr Ψ. Note that sincêhopt is an eigenvector of

(Ψ
H
R−1

rr Ψ)−1, the minimum variance receiver filters in (13)
are given bywopt = αR−1

rr Ψĥopt, w̃opt = αR−1
rr Ψ̃ĥ∗

opt,
whereα is the eigenvalue associated to the eigenvectorĥopt.

In the next sections we consider possible efficient recursive
least squares implementations, and derive the new channel
estimation algorithm.

IV. A R ECURSIVELEAST SQUARES IMPLEMENTATION

The recursive least squares solution in the previous section,
uses Kalman RLS recursions to compute recursivelyR̂−1

rr (i)
and the associated matrices and eigenvectors needed for the
minimum variance receiver filter parameter vectors. Once
R̂−1

rr (i) is updated, we can form the matrixΨ
H
R̂−1

rr (i)Ψ and
compute its minimum eigenvalue and associated eigenvector
directly applying SVD decomposition.

The updated formulae are as follows. First compute

R̂−1
rr (i) =

1

λ

[
R̂−1

rr (i − 1) − γ(i)ψ(i)ψH(i − 1)
]
, (17)

whereψ(i) is defined as the Kalman gain vector,ψ(i) =

R̂−1
rr (i−1)r(i), γ(i) =

[
λ

1−λ
+ rH(i)R̂−1

rr (i − 1)r(i)
]−1

and
0 < λ < 1 is the forgetting factor.

Then, post-multiplying (17) byΨ, Γ(i) = R−1
rr (i)Ψ can

be updated as [7]:

Γ(i) =
1

λ

[
Γ(i − 1) − γ(i)Ψ(i)rH(i)Γ(i − 1)

]
(18)

and by applying the SVD onΨ
H
Γ(i) we can obtain the

channel vector estimate as the eigenvector associated withthe
minimum eigenvalue ofΨ

H
Γ(i). In order to avoid the SVD

decomposition, the inverse power method can be used [8]:

ν(i) =
1

tr
[
Ψ

H
Γ(i)

]

ĥ(i) =
[
I2NL − ν(i)Ψ

H
Γ(i)

]
ĥ(i − 1)

ĥ(i) =
ĥ(i)

‖ĥ(i)‖
(19)

Finally, the receiver vectors are estimated asw(i) =
α(i)Γ(i)ĥ(i), w̃(i) = α(i)Γ̃(i)ĥ∗(i), where α(i) =

ĥH(i)Ψ
H
Γ(i)ĥ(i).

The value for the input signal autocorrelation matrix at time
zero is [7]

R̂rr(0) = E0diag(1, λ−1, λ−2, · · · , λ−(M−1)) (20)

whereE0 is the forward prediction error energy and must be
a positive value. At instant zero,Γ(0) = R−1

rr (0)Ψ.

V. A D IFFERENTAPPROACH: NEW CHANNEL ESTIMATION

ALGORITHM

If we define the matrices

Q = R−1
rr Ψ(Ψ

H
R−1

rr Ψ)−1

Q̃ = R−1
rr Ψ̃(Ψ̃HR−1

rr Ψ̃)−1 (21)

then, the receiver filters in (13) can be rewritten as

wopt = Qĥ

w̃opt = Q̃ĥ∗ (22)

and the resulting minimum variance, (11):

JMV (wopt) = ĥHQ
H
RrrQĥ+ ĥT Q̃HRrrQ̃ĥ

∗. (23)



As before, maximizing the minimum variance, and using
the fact thatĥT Q̃HRrrQ̃ĥ

∗ is real valued and taking into
account the conjugate symmetric properties induced by space-
time block codes,̂h can be estimated by

ĥopt = arg max
||ĥ||=1

ĥH
(
Q

H
RrrQ

)
ĥ (24)

Defining ru(i) = Q
H
r(i), with the autocorrelation matrix

Rruru
= E

[
ru(i)rH

u (i)
]

= Q
H
RrrQ, (24) reduces to

ĥopt = arg max
||ĥ||=1

ĥHRruru
ĥ. (25)

Thus, the channel vector estimate,ĥopt, can be computed
by the SVD decomposition, as the eigenvector associated with
the maximum eigenvalue ofRruru

.
In practiceRruru

is a rank-one updated matrixRruru
(i) =

λRruru
(i−1)+ru(i)rH

u (i), and therefore, vector̂hopt can be
more efficiently computed by subspace tracking algorithms,as
will be shown next.

A. Recursive Least Squares Implementation

Using (18), applying the matrix inversion lemma toΨ
H
Γ(i)

and pre-multiplying the result byΓ(i) we get thatQ̂(i) =

Γ(i)(Ψ
H
Γ(i))−1 can be estimated recursively as [7]:

u(i) = Ψ
H
ψ(i) (26)

vH(i) = rH(i)Q̂(i − 1) (27)

Q̂(i) =
[
Q̂(i − 1) − γ(i)ψ(i)vH(i)

]
·

·
[
I2NL +

u(i)vH(i)
1

γ(i) − vH(i)u(i)

]
, (28)

the initialization is performed aŝQ(0) = Γ(0)(Ψ
H
Γ(0))−1.

To estimate the channel vector without incurring into the
high computational cost of the SVD decomposition, we pro-
pose the use of two subspace tracking algorithms. The first
one is the so-called natural power method [9], which is the
fastest of the power methods to compute eigenpairs [10]. The
channel estimation algorithm by the natural power method is
summarized in Tab. I, wherem(ĥ(i)) denotes the component
of maximal magnitude of̂h(i).

Table I
CHANNEL ESTIMATION BY THE NATURAL POWER METHOD

a) UpdateQ̂(i) as in (26)-(28)

b) Computeru(i) = Q̂
H

(i)r(i)
c) UpdateRruru

(i) = λRruru
(i) + ru(i)rH

u (i)
d) Update the channel estimate using the

natural power method algorithm:
ĥ(i) = Rruru

(i)ĥ(i − 1)

ĥ(i) =
ĥ(i)

m(ĥ(i))

d) Compute the filtersw(i) = Q̂(i)ĥ(i) andw̃(i) =
ˆ̃
Q(i)ĥ∗(i)

The second method we propose to use is the PASTd
algorithm [11]. This is due to the fact that the autocorrelation

matrix Rruru
(i) is rank-one updated and low computational

complexity algorithms are available to use. Moreover, it tracks
the principal components sequentially and is ideally suited
when only the largest eigenvalue and the corresponding eigen-
vector are needed, as in this case. The overall algorithm for
channel and receiver estimator is summarized in Tab. II. Note
in Tab. II that the estimation ofRruru

is not performed, thus
reducing the computational cost.

Table II
CHANNEL ESTIMATION BY THE PASTD ALGORITHM

a) UpdateQ̂(i) as in (26)-(28)

b) Computeru(i) = Q̂
H

(i)r(i)
c) Update the channel estimate using the PASTd algorithm:

β(i) = ĥH(i − 1)ru(i)
α(i) = λα(i − 1) + ‖β(i)‖2

ĥ(i) = ĥ(i − 1) + (ru(i) − ĥ(i − 1)β(i))β∗(i)/α(i)

d) Compute the filtersw(i) = Q̂(i)ĥ(i) andw̃(i) =
ˆ̃
Q(i)ĥ∗(i)

1) Remark: The computational cost associated with the
estimation ofQ(i) in (28) is of the same order than the
computational cost associated to computeΨ

H
Γ(i) in (18).

However, the computational cost associated to the channel
estimation, with dimension2LN , by SVD is cubic and by
the inverse power method in (19) is quadratic while the cost
of estimate the channel by the PASTd algorithm is linear,
thus, the proposed algorithm reduces the overall number of
operations.

2) Remark: As can be noted, the channel estimates in (16)
and (25) are mathematically equivalent. However, as shown
numerically in the Section VI, the estimate ofQ(i) in (28)
converges faster than the estimate ofΓ(i) in (18), so the
slower convergence of the PASTd algorithm is compensated
and the performance, in terms of bit error rate, of the minimum
variance receiver using (13) or using (22) for the proposed
method, is slightly better for the proposed algorithm.

VI. SIMULATION RESULTS

In this section we present results for a BPSK synchronous
Alamouti MC-CDMA system that employ Hadamard se-
quences of lengthM = 16. In the first experiment we consider
a dynamic scenario where the system has initially3 users, the
power level distribution amongst the interferers follow a log-
normal distribution with associated standard deviation of3 dB.
After 1000 symbols,3 additional users enter the system and
the power level distribution amongst interferes is loosen with
associated standard deviation being increased to6 dB. Because
we focus on a downlink scenario the users experience the
same channel conditions. The channel between each antenna
in the transmitter and each antenna in the receiver hasL = 4
paths, whose gains are randomly drawn from a zero-mean
complex Gaussian random variable and kept fixed throughout
each simulation run. The relative power of each path was set
to 0, −3, −6 end −9 dB. The forgetting factor was set to
λ = 0.995 and the initial condition̂h(0) = [1 · · · 0]T for the
channel estimate was used. A guard interval length ofG = 3



was assumed. The results are an average of500 runs. The
phase ambiguity derived from the blind channel estimation
procedure is eliminated in our simulations by using the phase
of the first component ofh as a reference.

In Fig. 2 we plot the mean squared error (MSE) of the
estimate ofQ(i) and the estimate ofΨ

H
Γ(i), where the mean

squared error (MSE) is defined here as

MSE(Q(i)) = E

[
‖Q− Q̂(i)‖2

F

]

MSE(Ψ
H
Γ(i)) = E

[
‖ΨH

Γ − Ψ
H
Γ(i)‖2

F

]

whereQ and Ψ
H
Γ are analytical matrices and‖ · ‖F is

the frobenius norm. We plot the MSE for a signal to noise
ratio of 15 dB respect to the desired user power level. One
antenna (N = 1) was used in the receiver. As stated before,
the estimate ofQ(i) converges faster than the estimate of
Ψ

H
Γ(i).
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In the same scenario, we assess the performance of the
proposed channel estimation in terms of mean squared error
(MSE). We compare the channel estimation in (16) by directly
applying the SVD decomposition (SVD), the inverse power
method in (19) (IPM) and the channel estimation by the
PASTd algorithm (PASTd). The channel estimation result
using the natural power method (NPM) is not shown because
it yielded results similar to the SVD algorithm (with less
computational complexity). It is important to stress, however,
that the NPM presents higher computational complexity than
the PASTd algorithm.

In Fig. 3 we plot the channel estimate mean square error,
for signal to noise ratio of0 dB and 15 dB respect to the
desired user power level. One antenna (N = 1) was used
in the receiver. As it can be observed, the PASTd channel
estimate presents a convergence rate comparable to the inverse
power method and the SVD, however the minimum error is
higher. Similar results are shown in Fig. 4, where two antennas
(N = 2) were used in the receiver.

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

Number of Symbols

M
S

E
 o

f h
(i)

 

 

SVD
IPM
PASTd

E
b
/N

0
=0dB

E
b
/N

0
=15dB

Figure 3. Channel estimation mean square error for dynamic scenario, N =
1.
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Figure 4. Channel estimation mean square error for dynamic scenario, N =
2.

For the next experiment we use a sequence of time-
varying channel coefficients for each user,hl(i) = plαl(i)
(l = 0, 1, 2, . . . , L − 1) obtained with Clarke’s model [12].
This procedure corresponds to the generation ofL independent
sequences of time correlated unit power complex Gaussian
random variables (E

[
|α2

l (i)|
]

= 1) with the path weights
pl normalized so that

∑Lp

l=1 |pl|2 = 1. We use a four-path
channel (L = 4) with relative power of0, −3, −6 and
−9 dB. The channel coefficients change each two-symbol
period. The results are shown in terms of the normalized
Doppler frequency(fdT ), wherefd is the Doppler frequency
and T is the inverse of the symbol rate. In the simulations
a fdT = 0.0001 was assumed. The system is loaded with4
users in a severe near-far scenario where each interferer has a
power level20 dB above the desired user, that is, near-far ratio
(NFR) is equal to20 dB. In Fig. 5the bit error rate (BER)
for the three algorithms. One antenna (N = 1) was used in



the receiver is plotted. It is shown that the proposed method
performs as good as the SVD method, while the inverse power
method presents an instability for high signal to noise ratios
in a time-varying channel. The results are an average of500
runs, each one consisting of 2000 transmitted symbols.
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Figure 5. BER for time-varing channel,fdT = 0.0001, N = 1.

VII. C ONCLUSIONS

In this paper we proposed linearly constrained minimum
variance receiver for space-time multicarrier CDMA systems
in frequency selective fading channels. A recursive least
squares implementation was presented and its was shown that
the channel can be blindly estimated as the eigenvector that
corresponds to the maximum eigenvalue of an autocorrelation
matrix. Efficient algorithms for subspace tracking were used
to estimate the channel and it was shown through computer
simulations that the proposed channel estimation algorithm
achieves performance comparable to traditional algorithms
with less computational cost.
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