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Abstract—A fundamental understanding of the delay behavior
of network coding is key towards its successful applicationin
real-time applications with strict message deadlines. Previous
contributions focused mostly on the average decoding delay,
which although useful in various scenarios of interest is not
sufficient for providing worst-case delay guarantees. To overcome
this challenge, we investigate the entire delay distribution of
random linear network coding for any field size and arbitrary
number of encoded symbols (or generation size). By introducing a
Markov chain model we are able to obtain a complete solution for
the erasure broadcast channel with two receivers. A comparison
with Automatic Repeat reQuest (ARQ) with perfect feedback,
round robin scheduling and a class of fountain codes revealsthat
network coding on GF(24) offers the best delay performance
for two receivers. We also conclude thatGF(2) induces a heavy
tail in the delay distribution, which implies that network c oding
based on XOR operations although simple to implement bears
a relevant cost in terms of worst-case delay. For the case of
three receivers, which is mathematically challenging, we propose
a brute-force methodology that gives the delay distribution of
network coding for small generations and field size up toGF(24).

Index Terms—network coding, delay, transport protocols,
probabilistic analysis

I. I NTRODUCTION

After a decade of research the throughput benefits and
robustness properties of network coding [3] have been well
established for highly dynamic networks. This research effort
has resulted in real-life protocols for wireless mesh net-
works [4] and peer-to-peer content distribution [5], among
other applications [6]. Arguably less well understood is the
delay behavior of network coding, which is of particular
relevance if network coding techniques are to be employed
equally successfully in real-time applications such as live
streaming or automatic control systems. The design of such
systems requires knowledge not just of the average decoding
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delay, which has already been studied to some extent, but
also of the worst-case delay, which can be inferred from the
complete delay distribution. Providing such a characterization
of network coding delay for various scenarios of interest is
the goal of this paper.

Consider the broadcast scenario depicted in Figure 1. A
source wants to transmitM information symbolss1, s2, .., sM

to a set of receiversR, with N = |R|. Each receiver observes
the output of an independent erasure channel. To overcome
the impairments of the channels while serving all of the
receivers simultaneously, the source is allowed to mix the
incoming symbols and send out linear combinations following
the basic rules of random linear network coding (RLNC) [7].
More specifically, the encoder mixess1, s2, .., sM and outputs

coded symbols of the form
M
∑

j=1

αjsj . The coding coefficients

α1, . . . , αM are independently and randomly selected from
GF(q). Coded symbols are transmitted over independent era-
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Fig. 1: System model.

sure channels. A symbol is erased with probabilityǫi on chan-
nel i, ∀i = 1, 2 . . .N . After collectingM linearly independent
combinations, each decoder is able to reconstruct the encoding
matrix by means of Gaussian elimination thus recovering
the original information symbols. Feedback is limited to one
acknowledgment for the reception of allM symbols. Our main
figure of merit is the decoding delayDi of each receiverRi,
which is defined as the total number of time slots required
for Ri to decode theM information symbols. Seeking to
characterize the probability distribution of the decodingdelay
of RLNC for the aforementioned communications scenario,
we make the following contributions:

• Fundamental Analysis:We propose a Markov chain ap-
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proach that enables us to derive the aforementioned delay
distribution for the case of two receivers and independent
erasure channels. The one receiver case follows immedi-
ately as a special case.

• Performance Evaluation and Comparison:In the case of
two receivers, we demonstrate that RLNC outperforms
Automatic Repeat reQuest (ARQ) with perfect feedback
for a Galois field larger or equal toGF(22). The per-
formance of RLNC is also shown to be superior to
that of Luby Transform (LT) codes (a class of fountain
codes [8]) and round robin scheduling — irrespective of
the field size. A similar analysis for the one receiver case
reveals that the delay distribution of RLNC is close to
that of ARQ schemes with perfect feedback already for a
relatively small field size, e.g.,GF(24). Our results also
show that opting for network coding overGF(2), which
is convenient for its low computational complexity, bears
the cost of a heavy tail in the delay distribution.

• Brute-Force Analysis:Since a generalization of the pro-
posed delay analysis becomes difficult already for three
receivers, we propose an alternative brute-force method-
ology. The key idea is to take a large number of fixed
erasure patterns and measure for every erasure pattern the
delay of all possible encodings or sets of linear combina-
tions of information symbols. Using a computing cluster,
we are able to demonstrate that this approach is feasible
for small field size and limited number of coded symbols
(i.e. smallgeneration size), yielding a characterization of
the delay distribution under such scenarios.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of relevant related work. The
analysis of RLNC delay is given in Section III, which explains
the Markov chain model and discusses in detail the cases
of two receivers and one receiver. Section IV compares the
delay performance of RLNC against three reference schemes,
namely, ARQ with perfect feedback, round robin scheduling,
and a LT code. Section V describes the proposed brute-
force methodology for analyzing the delay performance for
scenarios with three receivers. The paper concludes with
Section VI.

II. RELATED WORK

Network coding first appeared as an information theoretic
multicast problem under which the decoding delay is of
no importance [3]. The algebraic framework in [9] and the
emergence of Random Linear Network Coding (RLNC) [7]
led to practical applications in which the nodes in the network
generate linear combinations of information symbols using
random coefficients in a Galois field, as described in SectionI.
Typically, these random coefficients are sent in the header of
the packet that carries the coded symbols, which enables the
receiver to learn the coding matrix and recover the original
information by Gaussian elimination [10].
Most results that address network coding delay take into
account only the average delay performance. In [11] this
metric is computed for a broadcast scenario with multiple
receivers and then compared to round robin scheduling. The

average delay of network coding is shown to decrease with
a rising number of receivers. Likewise, the work described
in [12] provides results for the average delay yet includes
also the energy and throughput performance, as well as a
comparison with standard ARQ schemes. The average delay
for a time-division duplexing scheme is provided in [13] in a
broadcast network and the case of one receiver as a function of
the field size of RLNC is characterized without addressing the
actual delay distribution. The contribution in [14] is focused on
the average delay performance of systematic network coding
with small field sizes, once again in a broadcast network.

When feedback is available, more sophisticated mechanisms
can be used to broadcast a data stream to multiple receivers.A
typical approach is for the receiver to send an acknowledge-
ment once it decodes a complete set of coded symbols (or
generation). The work presented in [15] considers a limited
number of information symbols and characterizes the average
delay on a line network. It follows that in this special case
the delay performance is concentrated around its expectation.
Fountain codes, such as LT Codes [8], form yet another class
of codes that provide reliable communication and throughput
efficiency by acknowledging the successful decoding of the
original message block.

Naturally, it is possible to explore feedback in a more
elaborate way. For a half duplex channel, [16] combines the
idea of incremental redundancy with network coding, i.e.,
using feedback to request additional coded symbols. The work
therein proves that there exists an optimal number of coded
symbols that can be transmitted before the sender receives an
acknowledgment. There, the optimum is defined in terms of
the average delay required to complete the transmission of a
generation of information symbols. What each receiver feeds
back is the number of the degrees of freedom that are still
required for decoding the entire generation successfully.An
extension to this work is presented in [12], which offers a
complete delay and energy characterization of the aforemen-
tioned coding scheme. Online network coding mechanisms for
random arrivals of information symbols are considered in [17],
[18], [19], [20]. These contributions assume that information
symbols are combined dynamically using a sliding window
mechanism, whereby the destination node acknowledges the
degrees of freedom it receives. Unnecessary information sym-
bols are thus dropped from the sender queue. The delay
implications of this online network coding mechanism are
addressed in [21] and [22].

Since most results in the literature are based on the average
delay, the worst case delay performance is still not well under-
stood. Previous work on worst case delay includes [23] which
uses deterministic network calculus to describes delay service
guarantees for a packet at an intermediate node, however
the network model therein does not admit packet losses. By
considering erasure channels our work offers results for a more
realistic network model. This scenario of a source broadcasting
packets to several receivers over erasure channels was analyzed
in [24], where it was shown that the minimization of delay
for this broadcast scenario is NP-hard. Thus, knowing the
complete delay distribution is clearly a step-forward, as it
allows us to give upper and lower delay bounds for such a



3

model.

III. M AIN RESULT

In this section we show that the delay distribution problem
can be cast in a Markov chain model. This approach allows us
to obtain the delay distribution for RLNC. More specifically,
we provide an exact characterization for two receivers over
independent erasure channels. The one-receiver instance is
obtained as a special case. The following definitions are useful.

Definition 1: The knowledge space(or simply theknowl-
edge) Kl of a receiverl at a given timet is defined as the
linear span of the linear combinations of symbolss1, s2, .., sM

received byl until time t.
Definition 2: We say that a node hask degrees of freedom

(dofs) if the dimension of its knowledge space isk.
Definition 3: We say that a linear combination isinnovative

to receiverl at time t if it does not belong toKl.
We also require the following events related to the arrival

of a new coded symbol or linear combination.
Definition 4: Let EK denote the event that occurs when a

received linear combination is innovative given the knowledge
spaceKl of receiverl.

Definition 5: Let Enz
K denote the event that occurs when a

received linear combination, with a coding vector that is not
all zeros, isnot innovative with respect to the knowledge space
Kl of receiverl.

Definition 6: Let Z denote the event that corresponds to the
arrival of a linear combination with an all-zeros coding vector.

Since in our broadcast setting the source is common to all
receivers, it is likely that subsets of receivers have the same
information at any given time. We formalize this intuition as
follows.

Definition 7: We say that a subset of receiversL ⊆ Rl, L 6=
∅ and|L| > 1 share thecommon knowledgeCL at a given time
t if CL = ∩{l∈L}Kl at time t.

A. General Case

We consider the scenario depicted in Figure 1, in which
a source wants to transmitM symbols toN receivers. The
transmission adds a degree of freedom (dof) to the knowledge
space of a receiver if the channel does not erase it and the sent
linear combination is linearly independent of all previously
received linear combinations. We can describe this processby
means of a Markov chain model.

A Markov chain model is defined by a set of states and
a set of transitions with given probabilities. In our case, a
state consists of the numbers of dofs at each receiver, the
number of dofs for the common knowledge space of pairs
of receivers, the number of dofs for the common knowledge
space of groups of3 receivers, and so forth until we reach
the number of dofs for the common knowledge space of all
receivers. The dependence between the receivers inherent to
the broadcast scenario is captured by these state variablesof
common knowledge.

Each state is described by a set of elements as shown in
Figure 2. By(i1, i2, . . . , iN) we represent the dofs for each

of the N receivers, withil = dim(Kl), where Kl is the
knowledge of receiverl, denoted here asRl. We write

c1,2 = dim(C1,2)

. . .

c1,2,...,N = dim(C1,2,...,N )

for the common knowledge between each combination of
2, 3, . . . , N receivers. The total number of indexes of a state

is given by the expression
N−1
∑

γ=0

(

N

γ

)

= 2N − 1, which results

in a total number of states of(M + 1)2
N−1. The first state

of the model represents0 dof for all receivers, naturally the
common dofs are also0, hence the state can be represented
as (0, 0, ..., 0).

A transition to other states depends on the previous state, on
the set of receivers for which the coded symbol was correctly
received and the subset of nodes that obtain an innovative
linear combination. In every time slot a transition occurs.The
maximum dofs at each receiver is reached whenM linear
independent information symbols are received. When all nodes
receiveM dofs, they all share the same knowledge. Thus, there
exists an absorbing state, which is(M, M, ..., M). A stateβ

of a Markov chain is called absorbing if it has a transition
probability pβ,β = 1, which implies that the process never
changes state once it reaches stateβ.

i1, i2, . . . , iN , c1,2,

c1,3, . . . , c1,N , . . . , c1,2,...,N

Fig. 2: General state for theN -receiver case.

Transition Probability Matrix: As the state space is finite,
we can represent the transition probability distribution by the
transition matrixT, whose(u, v) element gives the probability
of going from stateu to state v. Since Markov chain is
stationary, the transition matrixT does not change with time.

From the(M+1)2
N−1 states we discard those never entered

by the process. We call these states invalid states and focus
on the valid ones. We denote byA the number of valid states.
Notice thatA ≤ (M + 1)2

N−1. For the lower bound, the
number of valid states should be greater than(M+1)N , which
corresponds to the total number ofN -tuples representing the
individual knowledges of the receivers forM transmitted
information symbols. Hence,A is bounded by two exponential
(on N ) growth terms:

(M + 1)N ≤ A ≤ (M + 1)2
N−1. (1)

Lemma 1:For theN = 2 receiver case, the number of valid
states is the solution of a difference equation. ForM ≥ 2,
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A(M, N) is given by:

A(M, 2) = 10+
47

6
(M − 2)+2(M − 2)2 +

1

6
(M − 2)3. (2)

The proof can be found in Appendix.
The general expression for the transition probability matrix

of sizeA×A is given in (3).

T =







p1,1(1) p1,2(1) ... p1,A(1)
... ...

...
...

pA,1(1) pA,2(1)... pA,A−1(1) pA,A(1)






, (3)

where pj,a(1) denotes the probability of arriving at statea
after one step when the chain starts in statej. Here, state
1 corresponds to(0, 0, . . . , 0) and stateA corresponds to
(M, M, , . . . , M). As stateA is an absorbing state, we have
that pA,A(1) = 1 andpA,a(1) = 0, ∀a = 1, 2, ..., A− 1.

A k-step transition probability matrix can be computed as
T

k, i.e., the k-th power of the transition matrix. Thisk-
step transition probability matrix represents the probability of
arriving at each of the states ink transitions (time slots). The
expression for matrixTk is given by (4).

T
k =







p1,1(k) p1,2(k) ... p1,A(k)
... ...

...
...

0 ... 0 1






, (4)

wherepj,a(k) denotes the probability of reaching statea in k

steps after starting from statej. We are particularly interested
in the case ofp1,A(k) because it describes the probability that
the information symbols are successfully decoded afterk time
slots.

Decoding Delay: Our goal is to derive a probability dis-
tribution for the decoding delay, i.e., determiningP (D = k)
for M symbols, wherek ≥M represents the number of time
slots needed to decode the information. Let us formalize our
definition of decoding delay and its link to the Markov chain
model.

A decoding delayD of k time slots indicates that exactlyk
time slots are required for all receivers to decode the informa-
tion, i.e., to transition to state(M, ..., M) of the Markov chain
for the first time. The probability ofP (D ≤ k) = p1,A(k),
which is the probability of arriving in state(M, ..., M) of the
Markov chain given that the system started at state(0, ..., 0).
Thus, the probability of decoding in exactlyk time slots is
given byP (D = k) = P (D ≤ k)− P (D ≤ k − 1).

Computational Complexity:For largeN , the model requires
high computational complexity, because the number of valid
statesA increases exponentially with the number of receivers.
The impact is evident when computing the transition proba-
bility matrix and managing the operations with matrices. We
want to find P (D ≤ k), which requires us to multiply a
A × A matrix up to (k − 1) times. For instance,N = 3
requires alreadyO(M7) states, which means a state has7
elements,3 for the knowledge of receivers and4 for the
common knowledge. This is still feasible for the two-receiver
case, as we discuss in Section III-B.

Particular cases:Two special cases are observed when the
channels assign specific values for the erasure probabilityand

a third one emerges when the receivers are arranged in a
different way:

• Perfect channels: It is the case when no erasures occur. A
state is represented only by the knowledge of one receiver
and the Markov chain has(M + 1) states.

• Noisy channels: This situation corresponds to channels
with high erasure probabilities, whose delay can be
approximated by independent random variables. The cu-
mulative distribution function of theN random variables
is then the product of the cumulative distribution function
of delay for each one of theN receivers. Hence, the
Markov chain reduces to the case of one receiver and
has(M + 1) states.

• Degraded channels: This case refers to the situation where
the channel of receiveri is a degraded version of the
channel of i − 1, ∀i = 2, 3, ...N . In this case, the
maximum decoding delay is always the delay of receiver
N . The Markov chain reduces again to the case of only
one receiver and has(M + 1) states.

In these particular situations, we can observe that our Markov
chain model is represented by one receiver. The total number
of states equalsM+1. For that reason, the model can be easily
extended to accommodate an arbitrary number of receivers.

B. The case of two receivers

For this case we denote byK1 the knowledge of the first
receiver, byK2 the knowledge of the second receiver and by
C = K1 ∩ K2 the common knowledge of both receivers. In
this case, each state is described by3 elements(i1, i2, c), with
i1 = dim(K1), i2 = dim(K2) andc = dim(C). The first state
corresponds to(0, 0, 0). The elements(i1, i2, c) evolve in each
slot and the final state is defined by(M, M, M). The following
theorem states the possible transition probabilities for the two
receiver case. Letd1 andd2 denote the dimensions of thenon
common knowledge ofR1 and R2, respectively. This means
thatda = dim(Ka\C) andia = c+da, whereia = dim(Ka),
c = dim(C) anda ∈ {1, 2}.

Theorem 1:In the Markov model RLNC overGF(q) with
two receivers, there exist at most7 states to which state
(i1, i2, c) can transit to with non-zero probability. The tran-
sition probabilities are given by (5), where

• P (Enz
Ka
∪ Z) = (q−M+c+da),

• P (EKa
∩ EKa∪Kb

) = 1− q−M+c+da+db ,
• P (EKa

∩ EKb
∩EKa∪Kb

) = 1− q−M+c+da+db ,
• P (EKa

∩ Enz
Kb

) = (1−q−M+c+da )(q−M+c+d
b−q−M+c)

(1−q−M+c) ,
• P (Enz

Ka
∩ Enz

Kb
∪ Z) = (q−M+c+db) −

[

(1−q−M+c+da)(q−M+c+d
b−q−M+c)

1−q−M+c

]

,

• P (EKa
∩ EKb

∩ Enz
Ka∪Kb

) =
[

(1−q−M+c+da)(1−q−M+c+d
b)

(1−q−M+c) −(1− q−M+c+da+db)
]

,

with a, b ∈ {1, 2} anda 6= b.

Proof: The first part of the proof is combinatorial in
nature and relies on considering all possible events, namely
(a) independent channels suffering erasures, and (b) the coded
symbol adding a dof, (c) the coded symbol not adding a dof,
or (d) a coding vector of all zeros with respect to the vector



5

Fig. 3: Markov Chain for two-receiver case.

P(i1,i2,c)→(i′
1
,i′

2
,c′)= (5)















































ǫ1ǫ2+ǫ1(1−ǫ2)P (Enz
K2
∪ Z)+ǫ2(1−ǫ1)P (Enz

K1
∪ Z)+

+(1−ǫ1)(1−ǫ2)P (Enz
K1
∩ Enz

K2
∪ Z), if 1) i′1 = i1, i

′
2 = i2, c

′ = c

(1−ǫ1)(1−ǫ2)P (EK1
∩ EK2

∩EK1∪K2
), if 2) i′1 = i1 + 1, i′2 = i2 + 1, c′ = c + 1

(1−ǫ1)(1−ǫ2)P (EK2
∩ Enz

K1
) +ǫ1(1−ǫ2)P (EK1

∩ EK2
∩ Enz

K1∪K2
), if 3) i′1 = i1, i

′
2 = i2 + 1, c′ = c + 1

ǫ1(1−ǫ2)P (EK2
∩EK1∪K2

), if 4) i′1 = i1, i
′
2 = i2 + 1, c′ = c

(1−ǫ2)(1−ǫ1)P (EK1
∩ Enz

K2
) +ǫ2(1−ǫ1)P (EK1

∩ EK2
∩ Enz

K1∪K2
), if 5) i′1 = i1 + 1, i′2 = i2, c

′ = c + 1
ǫ2(1−ǫ1)P (EK1

∩EK1∪K2
), if 6) i′1 = i1 + 1, i′2 = i2, c

′ = c

(1−ǫ1)(1−ǫ2)P (EK1
∩ EK2

∩Enz
K1∪K2

), if 7) i′1 = i1 + 1, i′2 = i2 + 1, c′ = c + 2.

spacesK1, K2, K1∪K2. We also observe the fact that several
combinations generate the same transition and that at every
time slot the source can provide at most one dof to each
receiver.

Let f = dim(K1 ∪K2) ≤M . Note thatf = i1 + i2 − c =
d1 +d2 + c or equivalently,c = i1 + i2− f . Let us also define
f ′ = dim(K1∪K2∪v), wherev is the incoming coded symbol.
Note that the transitions toi′a based onia are straight-forward,
i.e. eitheri′a = ia, because of an erasure or the fact that no
additional dof is provided toKa, or i′a = ia + 1, if there is
no erasure and the coded symbol is innovative toKa. When
an incoming coded symbolv is innovative toK1 ∪ K2 this
implies thatf ′ = f + 1. Conversely, if it does not provide a
dof or the coding vector is all-zero thenf ′ = f . Using this
knowledge, we can determine the values ofc′ based on the
transition toi′1, i′2 andf ′. Thus, there are3 possible values for
c′, namely,c, c + 1, c + 2. If both receivers maintain the same
dofs after the transition, clearlyc′ = c becausef ′ = f , i′1 = i1
and i′2 = i2. When an incoming coded symbol adds a dof to
K1 ∪K2, i.e., f ′ = f + 1, then we have two possibilities: (i)
c′ = c corresponding to the case in which only one receiver,
saya, gets a new dof, becausei′a = ia +1, i′b = ib, andb 6= a,
or (ii) c′ = c+1 in case both receivers get a new dof, because
i′1 = i1 + 1 and i′2 = i2 + 1.

When the incoming coded symbol is not innovative toK1∪
K2, i.e.,f ′ = f , then (i)c′ = c+1 if only one receiver, saya,
gets a new dof becausei′a = ia + 1, i′b = ib, andb 6= a or (ii)
c′ = c+2 if both receivers get a new dof, becausei′1 = i1 +1
and i′2 = i2 + 1.

Thus, a state has at most7 transition states with non-zero
transition probability, including the case of self-transition. The
transition probabilities match the previously described events,
combining the effect of erasures and innovativeness of the

coded symbols. This concludes the first part of the proof.

Let us now prove the expressions for the probabilities of the
different events for a coded symbol in terms of the knowledge
at the receivers. The probability that a coded symbol is
innovative with respect to the knowledge spaceKa of receiver
a is given by

P (EKa
) = P (EKa

∩ EC) = 1− q−M+c+da . (6)

The event that a coded symbol is not innovative or that the
coding vector is all-zero is the negation of an innovative coded
symbol arriving at the receiver. Thus, we get

P (Enz
Ka
∪ Z) = q−M+c+da . (7)

The probability of a coded symbol not adding a dof to one
receiver’s knowledge space while it is already a part of the
other receiver’s knowledge space is given by

P (EKa
∩ Enz

Kb
) = P (EKa

∩Enz
Kb
∩EC)

= P (EKa
|Enz

Kb
∩ EC)P (Enz

Kb
|EC)P (EC)

= P (EKa
|EC)P (EC)P (Enz

Kb
|EC)

=
1− q−M+c+da

1− q−M+c
(1− q−M+c)P (Enz

Kb
|EC).

Given that

P (Enz
Kb
|EC) = 1−P (EKb

|EC) =1−
1−q−M+c+db

1− q−M+c
,

then

P (EKa
∩Enz

Kb
) =

(1−q−M+c+da)(q−M+c+db−q−M+c)

(1− q−M+c)
.(8)

The probability that a coded symbol is not innovative for both
receivers or that the coding vector is all-zero is given by the
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expression

P (Enz
Ka
∩ Enz

Kb
∪ Z)

= 1− [P (EKa
∩EKb

)+P (EKa
∩ Enz

Kb
) + P (EKb

∩ Enz
Ka

)]

= P (EKb
)− P (Enz

Kb
∩ EKa

).

Taking into consideration (7) and (8), the final result is given
by

P (Enz
Ka
∩ Enz

Kb
∪ Z)

=
(

q−M+c+db

)

−

[

(1−q−M+c+da)(q−M+c+db− q−M+c)

1−q−M+c

]

.(9)

The probability that a coded symbol is innovative for both
receivers while not adding a dof toKa ∪Kb is given by the
expressionP (EKa

∩EKb
∩EKa∪Kb

) = 1−q−M+c+da+db . For
the case of a coded symbol that adds a dof to the knowledge
space of both receivers but does not add a dof toKa∪Kb we
can write

P (EKa
∩ EKb

∩ Enz
Ka∪Kb

)

=P (EKa
∩EKb

∩ EC)− P (EKa
∩ EKb

∩ EKa∪Kb
)

P (EKa
|EKb
∩EC)P (EKb

|EC)P (EC)−

−P (EKa
∩EKb

∩EKa∪Kb
)

=P (EKa
|EC)P (EKb

∩ EC)− P (EKa
∩EKb

∩ EKa∪Kb
).

The probability of a coded symbol being innovative toKa,
given that is also innovative to the common knowledge of
both receivers is

P (EKa
|EC)=

P (EKa
∩ EC)

P (EC)
=

1− q−M+c+da

1− q−M+c
.(10)

The probability P (EKa
∩ EKb

∩ Enz
Ka∪Kb

) is obtained by
combining (6) and (10).

P (EKa
∩EKb

∩ Enz
Ka∪Kb

) (11)

=

[

(1−q−M+c+da)(1−q−M+c+db)

(1−q−M+c)
−(1−q−M+c+da+db)

]

.

The probability that a coded symbol is innovative with respect
both toKa and toKa∪Kb is equivalent to the probability that
is innovative with respect toKa, Kb andKa ∪Kb yielding

P (EKa
∩ EKa∪Kb

)

= P (EKa
∩EKb

∩EKa∪Kb
) =(1− q−M+c+da+db).(12)

This concludes the proof.
Thus, we can compute the probability distribution of the

decoding delay (4). But first let us provide some intuition
on the transition probabilities for each state(i1, i2, c) to state
(i′1, i

′
2, c

′) given by the following7 cases:

1) i′1 = i1, i′2 = i2, c′ = c: this case includes the
events that (i) both channels induce erasures, (ii) one
channel induces erasure and the receiver corresponding
to the other channel gets a coded symbol that does not
increase the dofs of its knowledge or was encoded with
all zero coefficients, or (iii) the coded symbol is not
innovative for both receivers or was encoded with all
zero coefficients.

2) i′1 = i1 + 1, i′2 = i2 + 1, c′ = c + 1: both receivers

get innovative coded symbols and the transmitted coded
symbol is innovative with respect toK1 ∪K2.

3) i′1 = i1, i′2 = i2 + 1, c′ = c + 1: this case considers
the events that (i) both receivers get the coded symbol
and it is innovative forR2 but not toR1, (ii) only R2

receives the coded symbol and it is innovative forR2

but does not add a dof toK1, or (iii) only R2 receives
the coded symbol and the coded symbol adds a dof to
both K1 andK2 but is not innovative forK1 ∪K2.

4) i′1 = i1, i′2 = i2 + 1, c′ = c: R2 gets a new coded
symbol that is innovative forK1, K2 andK1∪K2, and
the channel associated toR1 suffers an erasure.

5) i′1 = i1 + 1, i′2 = i2, c′ = c + 1: this case is symmetric
to 3).

6) i′1 = i1 + 1, i′2 = i2, c′ = c: this case is symmetric to
4).

7) i′1 = i1 + 1, i′2 = i2 + 1, c′ = c + 2: both R1 and
R2 receive the coded symbol. The coded symbol is
innovative to both receivers but is not innovative for
K1 ∪K2.

Note that in case 7) the common part increases by2 in
a single time slot. This happens if the knowledge of both
receivers is increased, i.e., the coded symbol is innovative to
both receivers, but it is already part of the common knowledge
space. For instance, whenM = 2 we can have the following
situation. Before receiving a new coded symbol,R1 hasK1 =
{s1} andR2 hasK2 = {s2}, thereforK1 ∩K2 = ∅. This is
represented by state(1, 1, 0), i.e., each receiver has one dof
and they share no common knowledge. In the next time slot, a
new coded symbol is transmitted that is a linear combination
of s1 ands2. The knowledge of both receivers increases by one
once this coded symbol is received, while the common part is
increased by2 sincedim (K1 ∩K2) = dim (s1, s2) = 2. This
state is represented by(2, 2, 2).

C. The case of one receiver

Suppose now that the source wants to sendM informa-
tion symbols to a receiver. A similar model Markov model,
focusing on average decoding delay, is studied in [13]. The
transitions fromi1 to statei′1 are given by the following two
cases:

• i′1 = i1: the coded symbol suffers an erasure or the coded
symbol is received but it does not add a new dof to the
knowledge of the receiver.

• i′1 = i1 + 1: a coded symbol is received and the receiver
gets a new dof.

The associated transition probabilities are given by

P(i1)→(i′
1
) =

{

ǫ1 + (1− ǫ1)P (Enz
K1
∪ Z), if i′1 = i1

(1 − ǫ1)P (EK1
∪ Z), if i′1 = i1 + 1

=

{

ǫ1 + (1− ǫ1)q
−M+i1 , if i′1 = i1

(1− ǫ1)(1 − q−M+i1), if i′1 = i1 + 1.

As in the general case, the probabilityP (D ≤ k) is given
by the elementp1,A(k) from T

k, whereA = M + 1. The
(M + 1)-th state is associated with statei1 = M and the first
state is associated to statei1 = 0.
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IV. I NSIGHTS AND PRACTICAL IMPLICATIONS

Having derived analytical expressions for the delay distri-
bution of RLNC, we are now ready to discuss some of the
insights they offer. To this end, we compare the decoding delay
of RLNC with three well established transmission schemes:

• ARQ: The sender will transmit every symbol, whose
reception is not acknowledged by each receiver. This
scheme is known to achieve optimal throughput and min-
imum delay over the erasure channel with one receiver
(see [19]).

• LT codes: This class of rateless codes is well known to
ensure reliability and optimum throughput over erasure
channels (see [25]). Feedback is only used for acknowl-
edging the successful reception of all information sym-
bols. The encoder performs combinations of information
symbols using an appropriate degree distribution in order
to minimize the number of redundant code symbols.
Usually, the degree is chosen from a robust soliton
distribution, which requires two additional parameters to
be set, namely a constant,const < 1, and a boundδ on
the decoding failure probability [26].

• Round robin: This mechanism is well known to yield op-
timum throughput in broadcast scenarios [11] [27], where
the receivers experience the same probability of erasure.
It is a scheduling scheme with minimalistic feedback,
where the source sends the information symbols in round-
robin fashion until the receivers announce the reception
of all M information symbols.

The numerical results for these three techniques were ob-
tained through simulation. For the ARQ scheme, the source
sends the same information symbol until it receives ACKs
of successful reception from all the receivers. In the case
of the LT codes we use the robust soliton distribution, with
const = 0.01 and δ = 0.7. As our analysis focuses on small
values ofM , the performance of LT codes is not sensitive to
the values ofconst and δ. The round robin experiences the
same minimalistic feedback as our model by only acknowl-
edging the correctly received information symbols at all the
receivers. Using these reference systems as a benchmark for
the delay performance of RLNC, we now discuss the two
receiver case in detail.

A. Two receivers

We characterize the delay distribution of RLNC by means
of the transition probability matrix defined in (4). The analysis
is carried out for different field sizes, erasure probabilities and
number of information symbols.

Field size: In order to study the effect of the field size, we
assume that the channels have identical erasure probability.
The number of transmitted information symbols is fixed to
10 and we vary the field size fromGF(2) to GF(28).
A comparison with ARQ, round robin scheduling and LT
codes is also included. For the case of a channel with small
erasure probability (equal to0.05), the findings are shown in
Figure 4(a), where it is possible to see that RLNC inGF(24)
outperforms ARQ, and RLNC overGF(2) outperforms LT
codes.

For a scenario with higher erasure probability, Figure 4(b)
shows that RLNC outperforms ARQ when done in fields as
small asGF(22). LT codes and the scheduling scheme are
outperformed by RLNC.
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(a) ǫ = 0.05
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Fig. 4: The effect of the field size in the two-receiver case. Here we
haveM = 10, ǫ = 0.05 (a), ǫ = 0.2 (b) and various field sizes.

For field sizes larger thanGF(24), the delay performance
is similar, as evidenced by both figures. Thus, in the following
we take GF(24) as a representative for higher fields. We
conclude from here that forGF(24) and a broadcast sce-
nario with two receivers, RLNC outperforms all the other
transmission schemes. In particular,GF(2) performs better
than LT codes and round robin. Moreover, as the erasure
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probability increases, the minimum field size under which
RLNC outperforms ARQ becomes smaller.
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Fig. 5: The effect of erasure probability in the two-receiver case with
M = 10, fixed field sizes and various erasure probabilities.

Erasure probability: The effect of erasure probability is
illustrated in Figure 5. We fix the number of information sym-
bols (M = 10) and the field size (GF(2) andGF(24)), and
vary the erasure probability (ǫ = 0.05, ǫ = 0.1, ǫ = 0.2 and
ǫ = 0.3). The channels have identical erasure probabilities. We
present onlyGF(2) andGF(24), because forGF(q ≥ 24) the
results are similar toGF(24). In this case, by increasing the
erasure probability, the average delay increases with the same
proportion forGF(2) and for GF(24). For instance, if we
consider the case ofGF(2), the average delay forǫ = 0.05
is 12.68 and for ǫ = 0.3 we get 18.40, which implies an
increase of45%. The same analysis forGF(24) yields 10.96
and15.77, respectively corresponding to an increase of44%.
Hence, for two receivers, the result shows that the effect of
erasures and field size are completely separable.

B. One-receiver

In order to study the effect of field size in delay when using
RLNC, we fix the number of information symbols,M = 10,
and erasure probability,ǫ = 0.2, while varying the field size.
From our illustrations in Figure 6(a) we can see thatGF(2)
induces heavy tails. The average delay forGF(2) is 14.31
time-slots and forGF(24) and GF(28) is 13.5 time-slots.
We compare other transmission schemes withGF(24), as
shown in Figure 6(b). The results for ARQ andGF(24) are
similar. Round robin scheduling is outperformed byGF(2).
LT codes provide the worst performance for this scenario. Both
the round robin mechanism and the LT codes induce heavier
tails than those observed for small field sizes. RLNC over
GF(2) thus offers superior worst-case delay guarantees than
the two competing schemes.
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Fig. 6: The effect of the field size in the one-receiver case with
M = 10, ǫ = 0.2.

C. Number of information symbols

We now analyze the effect of the number of information
symbols to be encoded for various field sizes. The probability
that a receiver obtainsM linearly independent combinations

from M received coded symbols is given by:P =

M−1
∏

j=0

(1 −

qj−M ) [11], whereq is the field size. By changing variables

and callingu = j −M we have:P =

−1
∏

u=−M

(1 − qu). Note
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that for a given field sizeq, if u is below a certain value,qu

is negligible when compared to1. Hence, when we increase
the number of information symbols, i.e. the value ofM , the
probability of havingM linearly independent combinations
from M coded information symbols remains the same. For
GF(q ≥ 22), we may safely neglect the effect of the number
of information symbols in the probability of obtainingM lin-
early independent combinations fromM coded symbols. For
the decoding delay in noisy channels, the erasure probability
plays the central role on the choice of a suitableM in order
to ensure, for example, that allM information symbols are
delivered on time when the application has strict deadlines.

V. BRUTE-FORCE ANALYSIS

The next natural step would be to extend the delay analysis
of Section III to the case ofN > 2 receivers. Given the
mathematical difficulty of characterizing the required transi-
tion probabilities and hence obtain the delay distributionof
network coding for more than two receivers, we propose an
alternative brute-force approach.

A. Methodology

We start by fixing the number of receiversN , the number of
information symbols to be combinedM , the field sizeq and
the erasure probabilityǫ of each channel. Based on the values
of these parameters, erasure patterns are generated for testing
purposes. Their lengtht must be sufficient to allow for all
receivers to recover all of the information symbols with high
probability. It is useful to represent each erasure patternas a
matrix of the formep = [ep

1
|ep

2
|. . . |ep

N
]T , whereep

i
is a

binary vector of lengtht. Each element of the vector indicates
if a coded symbol transmitted at the corresponding time slot
is erased or arrives correctly at receiveri.

In a second step, we generate all possible linear combina-
tions of theM information symbols that can be generated
by the encoder fort time slots. For each erasure pattern,
we try out all possible encodings, which are erased at the
given positions and decoded by Gaussian Elimination. The
delay is measured by counting the number of slots until all
information symbols are decoded by all receivers. To reduce
the computational effort, we adapt the number of time slots to
the parameter values of each experiment, such that at leastM

coded symbols are received with probability larger than99%.
The minimum number of time slots required is computed using
Algorithm 1.

For each erasure probability we run a number of experi-
ments (one for each erasure pattern) and compute the mean
and standard deviation of the decoding delay. The length
of the erasure pattern is determined using Algorithm 1. To
ensure the statistical significance of our results, we must run
a sufficient number of experiments depending on the value
of the erasure probability. LetH be the number of erasures
in a specific erasure pattern. We start by settingH = 0
and compute the probability of occurrence for this erasure
pattern. The procedure is repeated by incrementingH at each
step until the total probability of the thus obtained erasure
pattern is higher than0.9. This can be validated using the

Algorithm 1 Number of Time Slots for an Experiment
Data: erasure probability (ǫ), number of information sym-
bols (M ), number of receivers (N )
Result: number of time slots (t)
Sum← 0
TotalSum← 0
t←M − 1
while TotalSum ≤ 0.99 do

t← t + 1
Sum← Sum +

(

t−1
M−1

)

· (1 − ǫ)M · ǫ
t−M

TotalSum← SumN

end while

binomial distribution to compute the total probability of the
erasure patterns with up toH erasures, specificallyPo =
H

∑

h=0

(

N ·t

N ·t−h

)

· (1− ǫ)N ·t−h · ǫh. The value ofH for which

this probability exceeds0.9 is denoted asHmax. It follows that
the adequate number of erasure patterns for experimentation

is given byΛ =

Hmax
∑

h=0

(

N ·t

N ·t−h

)

.

B. Experiments

The proposed approach is obviously demanding from a
computational point of view. In our experiments, we used
a cluster of computers to obtain results for field sizes up
to GF(24) and a limited number of receivers. The cluster
distributes the computing effort among several independent
cores. Since the number of encodings is very large, we assign
independent threads for the same experiment. The number of
information symbols to be coded was kept deliberately small
in our examples (M = 2), however larger values ofM are
possible depending on the computational power of the cluster
and the available time. Recall that the delay is measured in
each experiment for every set of encodings and every receiver.
The delay histogram is then obtained by counting the number
of coded symbols that yields a particular delay value. Coded
symbols under which the receivers are unable to decode all the
information symbols are also accounted for. The probability
of decoding failure is given by

P(D) =
1

Po

Λ
∑

λ=1

P(D|Λλ) · P(Λλ), (13)

with P(Λλ) = (1 − ǫ)N ·t−h · ǫh, ∀h = 0, 1 . . .H and
P (D|Λλ) = (1− Gλ

G
), whereGλ is the number of encodings

that guarantees successful decoding under the erasure pattern
Λλ andG = maxλ Gλ.

Comparing with other existing methods, the brute-force is
the most well suited for our metric of interest. Whereas for
a given set of input parameters the brute-force methodology
generates all possible linear combinations of informationsym-
bols, the Monte Carlo method chooses a smaller number of
linear combinations at random. The accuracy of analysis for
Monte Carlo simulation depends on the choice of the random
function we choose to produce the linear combinations and
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Fig. 7: Brute-Force Analysis forN = 3, M = 2, ǫ = 0.05.

on the repetition of experiments. Consequently, even if it
requires more resources, the brute-force method should be
addressed for a more precise analysis. As an option for heavy
computational situations, Monte Carlo method may be used
instead.

As an example, Figure 7 shows the results for the case of
N = 3 receivers,M = 2 andǫ = 0.05 and various field sizes
GF(2) up toGF(24). The number of experiments used in the
study is79.

The results provided in Figure 7 were obtained for erasure
patterns that represent 97.5% of all possible occurrences.

Since we are trying all possible encodings, we obtain the
cumulative distribution function (CDF) for the delay, shown
in Figure 7(b). Both histogram and cumulative function reveal
that once againGF(2) induces a heavy tail and the perfor-
mance ofGF(23) is close to that ofGF(24). Using equation
(13), we can compute the probability of decoding failure for
all field sizes. It varies from0.032 to 0.097.

The brute-force approach can be used also to validate the
analytical method proposed in Section III. For the case of
N = 2, M = 2, ǫ = 0.05 and GF(24) we must to run37
experiments. Figure 8 shows that the analytical method and
the brute-force approach yield the same delay distribution.
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Fig. 8: Brute-Force vs. Analytic Model forN = 2, M = 2, ǫ = 0.05,
GF(24).

VI. CONCLUSIONS

We considered the delay behavior of network coding which
is key to the design of any system subject to strict message
deadlines. By determining the delay distribution of RLNC for
the case of two receivers, we were able to identify which
parameter settings can meet specific worst-case guarantees.
The benefits of RLNC in the broadcast scenario of interest
were further highlighted by comparing its delay distribution to
that of three other transmission schemes. Perhaps the most im-
portant insights are that network coding for two receivers over
GF(24) outperforms ARQ and thatGF(2), although simple
to implement, induces a heavy tail in the delay distribution.

Our analysis was given for the case of one-hop communi-
cation, but the insights we obtained can be translated to more
complex networks. In fact, the sender can be either the original
source at the edge of the network or an intermediate node
somewhere in the core. Likewise, the receivers can be either
intermediate nodes in the network or the final destination at
the edge of the network. On the other hand, the information
symbols as defined in our problem statement could in fact be
coded symbols if the sender acts as an intermediate node.
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What does not change is the fact that computing the delay
distribution of network coding is a high-dimensional and
computationally demanding problem. Since we are interested
in guidelines for system design, the proposed methods based
on a Markov chain model and a brute-force approach could be
used in combination to seek meaningful heuristics and bounds
for the design. In particular, a hybrid search would be able to
select the most relevant erasure patterns while capitalizing on
the Markov chain to take the impact of the field size into
account. Devising such strategies is part of our ongoing work.

APPENDIX

The proof of Lemma 1 is given in the following.
Proof: The number of valid states is the solution of

a difference equation whenN = 2 and M ≥ 2, and
we denote it byA(M, 2). By considering the number of
valid states forM = 2, 3, 4, 5, 6 information symbols, we
noticed that they follow a difference equation of the form
A(M +5, 2) = A(M +4, 2)−4A(M +3, 2)+6A(M +2, 2)−
4A(M + 1, 2) + A(M, 2). The characteristic polynomial for
this difference equation isz4−4z3 +6z2−4z +1 = 0, which
has only one root,z = 1, of multiplicity 4. Therefore, the
linear recurrence equation with constant coefficients takes the
form

A(θ, 2) = c1 + c2θ + c3θ
2 + c4θ

3, (14)

with θ ∈ 0...3. From (14) we findc1 = 10, c2 = 47
6 , c3 =

2 and c4 = 1
6 after applying the initial conditions, e.g., the

number of valid states forM = 2, 3, 4, 5, 6. By substituting
the coefficients andθ = M − 2 in expression (14) we get
A(M, 2) = 10+ 47

6 (M −2)+2(M−2)2 + 1
6 (M −2)3, which

is the same with (2).
This concludes the proof.
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