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Abstract—A fundamental understanding of the delay behavior
of network coding is key towards its successful applicatiorin
real-time applications with strict message deadlines. Praous
contributions focused mostly on the average decoding delay
which although useful in various scenarios of interest is no
sufficient for providing worst-case delay guarantees. To arcome
this challenge, we investigate the entire delay distributin of
random linear network coding for any field size and arbitrary
number of encoded symbols (or generation size). By introduicg a
Markov chain model we are able to obtain a complete solutiondr
the erasure broadcast channel with two receivers. A compason
with Automatic Repeat reQuest (ARQ) with perfect feedback,
round robin scheduling and a class of fountain codes reveakhat
network coding on GF(2*) offers the best delay performance
for two receivers. We also conclude thatGF(2) induces a heavy
tail in the delay distribution, which implies that network ¢ oding
based on XOR operations although simple to implement bears

a relevant cost in terms of worst-case delay. For the case of

three receivers, which is mathematically challenging, we nppose
a brute-force methodology that gives the delay distributio of
network coding for small generations and field size up t@GF(2).

Index Terms—network coding, delay, transport protocols,

delay, which has already been studied to some extent, but
also of the worst-case delay, which can be inferred from the
complete delay distribution. Providing such a characteion
of network coding delay for various scenarios of interest is
the goal of this paper.

Consider the broadcast scenario depicted in Figure 1. A
source wants to transmit/ information symbolss, so, .., s
to a set of receiver®, with N = |R|. Each receiver observes
the output of an independent erasure channel. To overcome
the impairments of the channels while serving all of the
receivers simultaneously, the source is allowed to mix the
incoming symbols and send out linear combinations follgwin
the basic rules of random linear network coding (RLNC) [7].
More specifically, the encoder mixas, s, .., sp; and outputs

M

coded symbols of the for) _ a;s;. The coding coefficients

j=1
ai,...,ay are independently and randomly selected from
GF(q). Coded symbols are transmitted over independent era-

probabilistic analysis : Erasure| | Receiver 1
: — Decoder +—
' channel 3
I. INTRODUCTION Erasure Receiver 2
After a decade of research the throughput benefits ang°urce Erood ' [ channel 9| Pecoder —
robustness properties of network coding [3] have been well neoder H .
established for highly dynamic networks. This researchreff veceiverN
has resulted in real-life protocols for wireless mesh net- ; Erasure i JIbecoderN
works [4] and peer-to-peer content distribution [5], among + |channelN| .

other applications [6]. Arguably less well understood ie th
delay behavior of network coding, which is of particular
relevance if network coding techniques are to be employed

equally successfully in real-time applications such a® I|vS re channels. A symbol is erased with probabilitpn chan-

streaming or gutomatic control systems. The design of suf li,Vi=1,2...N. After collectingM linearly independent
systems requires knowledge not just of the average deCOdHHnbinations, each decoder is able to reconstruct the emgod

Fig. 1: System model.
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acknowledgment for the reception of all symbols. Our main
figure of merit is the decoding delay; of each receiveR?;,
which is defined as the total number of time slots required
for R; to decode theM information symbols. Seeking to
characterize the probability distribution of the decodiweday

of RLNC for the aforementioned communications scenario,
we make the following contributions:

o Fundamental AnalysisiVe propose a Markov chain ap-



proach that enables us to derive the aforementioned detaserage delay of network coding is shown to decrease with
distribution for the case of two receivers and independeatrising number of receivers. Likewise, the work described
erasure channels. The one receiver case follows immeiti-[12] provides results for the average delay yet includes
ately as a special case. also the energy and throughput performance, as well as a
« Performance Evaluation and Comparisdm: the case of comparison with standard ARQ schemes. The average delay
two receivers, we demonstrate that RLNC outperfornisr a time-division duplexing scheme is provided in [13] in a
Automatic Repeat reQuest (ARQ) with perfect feedbadkroadcast network and the case of one receiver as a fundtion o
for a Galois field larger or equal t&F(22). The per- the field size of RLNC is characterized without addressirgy th
formance of RLNC is also shown to be superior tactual delay distribution. The contribution in [14] is fead on
that of Luby Transform (LT) codes (a class of fountaithe average delay performance of systematic network coding
codes [8]) and round robin scheduling — irrespective ofith small field sizes, once again in a broadcast network.
the field size. A similar analysis for the one receiver case When feedback is available, more sophisticated mechanisms
reveals that the delay distribution of RLNC is close tean be used to broadcast a data stream to multiple recelvers.
that of ARQ schemes with perfect feedback already fortgpical approach is for the receiver to send an acknowledge-
relatively small field size, e.gGF(2%). Our results also ment once it decodes a complete set of coded symbols (or
show that opting for network coding ov€¥F(2), which generation). The work presented in [15] considers a limited
is convenient for its low computational complexity, bearaumber of information symbols and characterizes the aeerag
the cost of a heavy tail in the delay distribution. delay on a line network. It follows that in this special case
« Brute-Force AnalysisSince a generalization of the pro-the delay performance is concentrated around its expenotati
posed delay analysis becomes difficult already for thré®untain codes, such as LT Codes [8], form yet another class
receivers, we propose an alternative brute-force methaaf-codes that provide reliable communication and throughpu
ology. The key idea is to take a large number of fixedfficiency by acknowledging the successful decoding of the
erasure patterns and measure for every erasure patternatiginal message block.
delay of all possible encodings or sets of linear combina- Naturally, it is possible to explore feedback in a more
tions of information symbols. Using a computing clusteelaborate way. For a half duplex channel, [16] combines the
we are able to demonstrate that this approach is feasidea of incremental redundancy with network coding, i.e.,
for small field size and limited number of coded symbolssing feedback to request additional coded symbols. Th& wor
(i.e. smallgeneration sizg yielding a characterization of therein proves that there exists an optimal number of coded
the delay distribution under such scenarios. symbols that can be transmitted before the sender receives a

The remainder of the paper is organized as follows. seacknowledgment. There, the optimum is defined in terms of
tion 1l provides an overview of relevant related work. Théhe average delay required to complete the transmission of a
analysis of RLNC delay is given in Section Ill, which explgin generation of information symbols. What each receiver $eed
the Markov chain model and discusses in detail the cade@ck is the number of the degrees of freedom that are still
of two receivers and one receiver. Section IV compares tfeauired for decoding the entire generation successfaky.
delay performance of RLNC against three reference schen@ension to this work is presented in [12], which offers a
namely, ARQ with perfect feedback, round robin schedulin§omplete delay and energy characterization of the aforemen
and a LT code. Section V describes the proposed brutined coding scheme. Online network coding mechanisms for
force methodology for analyzing the delay performance fégndom arrivals of information symbols are considered iff,[1

scenarios with three receivers. The paper concludes wi#i$l, [19], [20]. These contributions assume that inforiomt
Section VI. symbols are combined dynamically using a sliding window

mechanism, whereby the destination node acknowledges the
degrees of freedom it receives. Unnecessary information sy
bols are thus dropped from the sender queue. The delay
Network coding first appeared as an information theoretimplications of this online network coding mechanism are
multicast problem under which the decoding delay is @fddressed in [21] and [22].
no importance [3]. The algebraic framework in [9] and the Since most results in the literature are based on the average
emergence of Random Linear Network Coding (RLNC) [7delay, the worst case delay performance is still not wellesnd
led to practical applications in which the nodes in the nekwostood. Previous work on worst case delay includes [23] which
generate linear combinations of information symbols usingses deterministic network calculus to describes delayicger
random coefficients in a Galois field, as described in Sedtionguarantees for a packet at an intermediate node, however
Typically, these random coefficients are sent in the heaflertbe network model therein does not admit packet losses. By
the packet that carries the coded symbols, which enables tdomsidering erasure channels our work offers results fooem
receiver to learn the coding matrix and recover the originedalistic network model. This scenario of a source broaauas
information by Gaussian elimination [10]. packets to several receivers over erasure channels wazeadal
Most results that address network coding delay take inio [24], where it was shown that the minimization of delay
account only the average delay performance. In [11] thisr this broadcast scenario is NP-hard. Thus, knowing the
metric is computed for a broadcast scenario with multipleomplete delay distribution is clearly a step-forward, &s i
receivers and then compared to round robin scheduling. Taléows us to give upper and lower delay bounds for such a

II. RELATED WORK



model. of the N receivers, withi; = dim(K;), where K; is the
knowledge of receivet, denoted here ag;. We write

[1l. M AIN RESULT c1o = dim(Cyo)
In this section we show that the delay distribution problem
can be cast in a Markov chain model. This approach allows us clo..n = dim(Cia.. N)

to obtain the delay distribution for RLNC. More specifically

we provide an exact characterization for two receivers ové the common knowledge between each combination of

independent erasure channels. The one-receiver instancé. - - -,V receivers. The total number of indexes of a state

obtained as a special case. The following definitions arfulise is given by the ex ressioNif N\ _ 9N _{ which results
Definition 1: The knowledge spacéor simply theknowl- g y P v) '

edgg K, of a receiverl at a given timet is defined as the . =0

N .
; ; S in a total number of states qf\/ + 1)>" ~1. The first state
linear span of the linear combinations of symbalsss, .., sy, .
. - of the model represents dof for all receivers, naturally the
received byl until time ¢.

Definition 2: We say that a node hasdegrees of freedom common dofs are als0, hence the state can be represented

(dofs)if the dimension of its knowledge spacekis as (0,0, o _O)' .
Definition 3: We say that a linear combinationiisovative A transition to other states depends on the previous state, o

to receiverl at time+ if it does not belong tak; the set of receivers for which the coded symbol was correctly
We also require the following events related to the arriv%.?ce'ved an.d the subset of -nodes that Obt.a.m an innovative
of a new coded symbol or linear combination. inear combination. In every time slot a transition occurse

Definition 4: Let Fx denote the event that occurs when g1aX|mum dqfs at ea}ch receer is reached wildnlinear
received linear combination is innovative given the knalge independent information symbols are received. When alésod
spacek of receiverl receiveM dofs, they all share the same knowledge. Thus, there

pacei, ; exists an absorbing state, which (i3, M, ..., M). A statef

Definition 5: Let E}* denote the event that occurs when & N o iy

X . < . . .. 0of a Markov chain is called absorbing if it has a transition
received linear combination, with a coding vector that i$ no robabilit — 1 which implies that the process never
all zeros, isnotinnovative with respect to the knowledge spacB YPsp = L P b
K, of receiverl. Changes state once it reaches sfate

Definition 6: Let Z denote the event that corresponds to the
arrival of a linear combination with an all-zeros coding teec

Since in our broadcast setting the source is common to all o .
receivers, it is likely that subsets of receivers have thaesa 1,225+ -5 IN, €125
information at any given time. We formalize this intuitios a
follows. C1,35-+-3CLNy---

Definition 7: We say that a subset of receivédrsC Ry, L #
¢ and|L| > 1 share theommon knowledg€’, at a given time
tif Cp = ﬂ{leL}Kl at timet.

Fig. 2: General state for th&/-receiver case.
A. General Case

We consider the scenario depicted in Figure 1, in which . o . P
P gure -, Transition Probability Matrix: As the state space is finite,
a source wants to transmit/ symbols to/N receivers. The o I
T e can represent the transition probability distributigntibe
transmission adds a degree of freedom (dof) to the knowledge ™" . . . o
T . ansition matrixT', whose(u, v) element gives the probability
space of a receiver if the channel does not erase it and the sen . i o
. S . . of going from stateu to statewv. Since Markov chain is
linear combination is linearly independent of all previgus - i e
. ) L . . stationary, the transition matriX’ does not change with time.
received linear combinations. We can describe this prdogss N ]
means of a Markov chain model From the(M +1)? " ~! states we discard those never entered

A Markov chain model is defined by a set of states arfy the process. We call these states invalid statgs and focus
a set of transitions with given probabilities. In our case, @ the valid ones. We denote bythe number of valid states.
state consists of the numbers of dofs at each receiver, Hgtice thatA < (M + 1) ~1. For the lower bound, the
number of dofs for the common knowledge space of paif§imber of valid states should be greater thaf1)*, which
of receivers, the number of dofs for the common knowled@'résponds to the total number dftuples representing the
space of groups o8 receivers, and so forth until we reacHnd'V'du?" knowledges of thg receivers fav/ transmltteq
the number of dofs for the common knowledge space of dpformation symbols. Hencel is bounded by two exponential
receivers. The dependence between the receivers inherer@f V) growth terms:
the broadcast scenario is captured by these state variables (M+1)N <A< (M+ 1)21\’71. 1)
common knowledge.

Each state is described by a set of elements as shown ilemma 1:For theN = 2 receiver case, the number of valid
Figure 2. By (i1, is,...,in) We represent the dofs for eachstates is the solution of a difference equation. Bér> 2,



A(M, N) is given by: a

A(M,2) =10+ %(M —2)+2(M—2)?+ %(M -2)%.(2)

The proof can be found in Appendix.
The general expression for the transition probability mmatr
of size A x A is given in (3).

p1a(1)  pr2(l) p1,4(1)
T = : : : )
pa1(l) paa(l)... paa—1(1) pa,a(l)

where p; ,(1) denotes the probability of arriving at state
after one step when the chain starts in stateHere, state
1 corresponds tq0,0,...,0) and stateA corresponds to
(M, M,,...,M). As stateA is an absorbing state, we have
thatpAA(l) =1 andpA,a(l) =0,Va=1,2,..., A—1.

A k-step transition probability matrix can be computed as
T*, i.e., the k-th power of the transition matrix. Thi-
step transition probability matrix represents the prolitgtf

®3)

third one emerges when the receivers are arranged in a

different way:

« Perfect channels: It is the case when no erasures occur. A
state is represented only by the knowledge of one receiver
and the Markov chain ha@\/ + 1) states.

Noisy channels: This situation corresponds to channels
with high erasure probabilities, whose delay can be
approximated by independent random variables. The cu-
mulative distribution function of thév random variables

is then the product of the cumulative distribution function
of delay for each one of thév receivers. Hence, the
Markov chain reduces to the case of one receiver and
has(M + 1) states.

Degraded channels: This case refers to the situation where
the channel of receivet is a degraded version of the
channel ofi — 1, Vi = 2,3,...N. In this case, the
maximum decoding delay is always the delay of receiver
N. The Markov chain reduces again to the case of only
one receiver and had\/ + 1) states.

arriving at each of t_heks'gatetc, intransitions (time slots). The | these particular situations, we can observe that our Mark
expression for matrixI™ is given by (4). chain model is represented by one receiver. The total number
pra(k) pia(k) prak) of states equals/+1. For that reason, the model can be easily
T" — ) ) ) extended to accommodate an arbitrary number of receivers.

0 0 1

(4)

- ] ) B. The case of two receivers
wherep, (k) denotes the probability of reaching statén %

steps after starting from staje We are particularly interested qu this case we denote by, the knowledge Of_ the first
in the case op; 4(k) because it describes the probability thaecever byK, the knowledge of the second receiver and by

the information symbols are successfully decoded aftéme C_: K1N K3 the common k_nowledge of bqth [Tecelvers. In
slots. this case, each state is described®lementsiy, i, ¢), with

Decoding Delay: Our goal is to derive a probability dis—le = dim(Ky), ip = dim(K) ande = fﬁm(c)' The f|r§t state
tribution for the decoding delay, i.e., determiniff D = k) corresponds 40, 0, 0). The elementsis, iz, ) evolve in each

for M symbols, wherd: > M represents the number of timesIot and the final state is defined by/, M, M). The following
' T . . theorem states the possible transition probabilitiesHertivo
slots needed to decode the information. Let us formalize our . Let dd. denote the di . f the
definition of decoding delay and its link to the Markov chaifCceVer case. Lal andd; denote the dimensions o n
model. common k.nowledge oy gnd R, respectlvgly. Th|s means
A decoding delayD of % time slots indicates that exactly thatd, = dim(K,\C) andia = c+da, wherei, = dim(Ko),

time slots are required for all receivers to decode the méor ¢ ?ﬁ:élr(e% ir:g C:hee {I\;;Iié)v model RLNC oveGF(q) with
tion, i.e., to transition to stat@\/, ..., M) of the Markov chain X d

for the first time. The probability oP(D < k) — p1.a(k), two receivers, there exist at mo%t states to which state

which is the probability of arriving in state, ..., M) of the (i1, 42,c) can transit to with non-zero probability. The tran-

Markov chain given that the system started at stéte..,0). sition proiabll|t|es are_g;\iecidby (5), where

Thus, the probability of decoding in exactly time slots is « P(ERZUZ)=(q “)_aM+ o

given by P(D = k) = P(D < k) — P(D < k —1). « P(Ex, NExk,uK,) =1—q¢ "¢ e
Computational ComplexityFor largeN, the model requires  °® P(Er, NExg, N Er,uk,) =14 T

) . X . nz (17(1 R +c+da)(q71¥1+c+db7q71u+c)
high computational complexity, because the number of valide P(Ek, N ER) = —q ™79 :
statesA increases exponentially with the number of receivers.« P(ERZ N Ep U Z) = (g~ Metd)
The impact is evident when computing the transition proba- (l—q’M*C*d;)(q’Zi“*d*)—q’M*C)

-y . . . . . _q* VI c L
bility matr_|x and managing the opera_t|0ns with matrlpes. We . P(Ex. A Ex, A EY p) _
want to find P(D < k), which requires us to multiply a (1gM+etday(q_g=M+etdyy M totd.td
A x A matrix up to (k — 1) times. For instanceN = 3 (T—q Fe) —(1—q T

requires alreadyD(M7) states, which means a state has with a,b € {1,2} anda # b.

elements,3 for the knowledge of receivers antl for the Proof: The first part of the proof is combinatorial in

common knowledge. This is still feasible for the two-reegiv nature and relies on considering all possible events, namel

case, as we discuss in Section |lI-B. (a) independent channels suffering erasures, and (b) thedco
Particular cases: Two special cases are observed when tleymbol adding a dof, (c) the coded symbol not adding a dof,

channels assign specific values for the erasure probadiitly or (d) a coding vector of all zeros with respect to the vector



P(M-1,M,M-1)->(M,M,M)

P(O,O,O)->(0, s

P,

(1,1,1)->(1,1,1) ...
P0,1,0)->(1,1,1) P(M,M-1,M-1)->(M,M,M)

R0,1,0->(0,1,0)

Fig. 3: Markov Chain for two-receiver case.

P(il,ig,c) — (i ,i%,¢" )= (5)

6162+61(1—€2)P(E?<Z2 U Z)+62(1—€1)P(E?<Zl U Z)—F

+(—e1)(—e2) P(ER N ER U Z), if 1) i} = i1, =i, =¢
(1—61)(1—62)P(EK1 n EK2 n EK1UK2)7 if 2) 2/1 =1+ 1,i12 =19+ 1,0/ =c+1
(1—61)(1—62)P(EK2 N E?é) +€1(1—62)P(EK1 N EK2 N E;ZUKz)’ if 3) 2/1 = il,i/g =19+ 1,0/ =c+1
e1(l-e2) P(Ex, N Ex, uK,), if 4) iy =dy,ip =dia+ 1, =¢
(1—62)(1—61)P(EK1 N E}g) +€2(1—61)P(EK1 N EK2 n E?(Zlqu)’ if 5) 2/1 =1+ 1,i12 = iQ,Cl =c+1
62(1—61)P(EK1 N EK1UK2)7 if 6) ’Lll =11+ 1,i/2 = iQ,C/ =c
(1—61)(1—62)P(EK1 N EK2 N E?{iuKQ)’ if 7) ’L/1 = il + 1,7,/2 = iQ + 1,C/ =c+ 2.

spacesk, Ko, K1 UK>. We also observe the fact that severatoded symbols. This concludes the first part of the proof.

combinations generate the same transition and that at every

time slot the source can provide at most one dof to eachLet us now prove the expressions for the probabilities of the

receiver. different events for a coded symbol in terms of the knowledge
Let f = dim(K; UK5) < M. Note thatf =i, +iy — ¢ = at the receivers. The probability that a coded symbol is

dy + ds + ¢ or equivalentlyc = i, + i, — f. Let us also define innovz_ﬂive with respect to the knowledge spdcg of receiver

' = dim(K;UK>Uv), wherev is the incoming coded symbol. @ IS gIven by

Note _that tjwe trgnsmons ), based oni, are straight-forward, P(Eg,) = P(Ex, NEc)=1— q_M+c+da_ (6)

i.e. eitheri/, = i,, because of an erasure or the fact that no

additional dof is provided tox,, or i/, = i, + 1, if there is The event that a coded symbol is not innovative or that the

no erasure and the coded symbol is innovativeé<ta When coding vector is all-zero is the negation of an innovativeemb

an incoming coded symbal is innovative toK; U K, this symbol arriving at the receiver. Thus, we get

implies thatf’ = f + 1. Conversely, if it does not provide a Nz — Metd,

dof or the coding vector is all-zero theff = f. Using this P(Ex,UZ)=q e, (7)

knowledge, we can determine the valuescbbased on the The probability of a coded symbol not adding a dof to one

transition toi’, i, and f’. Thus, there ar8 possible values for receiver's knowledge space while it is already a part of the

c, namely,c,c+ 1, ¢+ 2. If both receivers maintain the sameother receiver's knowledge space is given by

dofs after the transition, clearly = ¢ because’ = f, i} = s

andi), = i. When an incoming coded symbol adds a dof th (Ex. 0 Exs)

K1 UKy, ie., f'= f+1, then we have two possibilities: (i)

P(Exk, NEy. NEc)
P(Ek,|E¥;, N Ec)P(E;,|Ec)P(Ec)

¢’ = ¢ corresponding to the case in which only one receiver, = P(Ek,|Ec)P(Ec)P(E}|Ec)
saya, gets a new dof, becausg = i, +1, i}, = i3, andb # a, 1— g~ M+etda
or (i) ¢ = c+1 in case both receivers get a new dof, because = W(l_ q*M“)P(E?{ﬂEC).

’Lll =1 +1 andié:ig—i-l.

When the incoming coded symbol is not innovativeifpu
Ky, i.e., f' = f, then (i)¢’ = ¢+ 1 if only one receiver, say,
gets a new dof becausg = i, + 1, i, = i, andb # a or (ii)
¢ = c¢+2 if both receivers get a new dof, becau$e=i; +1
andi), =i + 1.

Thus, a state has at mosttransition states with non-zero  P(Ex NE}) =
transition probability, including the case of self-traisi. The (1=
transition probabilities match the previously describedngs, The probability that a coded symbol is not innovative forthot
combining the effect of erasures and innovativeness of theceivers or that the coding vector is all-zero is given by th

Given that
1 _ q—M+C+db

P(EY,|Ec) = 1-P(Ek,|Ec) :1—W7

then
(1_ q—]\l-ﬁ-c-ﬁ-da ) (q—M+c+db _ q—M+c) (8)
q71\4+c) !




expression get innovative coded symbols and the transmitted coded
symbol is innovative with respect th; U K.

3) iy = i1, 15, =2+ 1, ¢ = ¢+ 1: this case considers
the events that (i) both receivers get the coded symbol
and it is innovative forRy but not to Ry, (ii) only Rs
receives the coded symbol and it is innovative for
but does not add a dof t&(y, or (iii) only R, receives
the coded symbol and the coded symbol adds a dof to
both K; and K5 but is not innovative forK; U K.

(1 —q~M+e+da) g=Metds _ g=M+o) 4) iy =iy, i, =i+ 1, ¢ = ¢ Ry gets a new coded

= (J—Mﬂ“ﬁdb)»[ 4 d q (9) symbol that is innovative fok;, Ks and K1 U K5, and

the channel associated 1o, suffers an erasure.

The probability that a coded symbol is innovative for both 5) i} =i; + 1, i, = is, ¢ = ¢ + 1: this case is symmetric

receivers while not adding a dof t&, U K} is given by the to 3).

expression?(Ex, NEx,NEk,uxk,) = 1—¢ M tetdatd For 6) i} = i1+ 1, i = iz, ¢ = c: this case is symmetric to

the case of a coded symbol that adds a dof to the knowledge 4).

space of both receivers but does not add a ddfto) K;, we 7) i =41 +1,i =iy+1, ¢ = ¢+ 2: both Ry and

can write Ry receive the coded symbol. The coded symbol is

innovative to both receivers but is not innovative for
KU Ks.

Note that in case 7) the common part increases2bin

a single time slot. This happens if the knowledge of both

receivers is increased, i.e., the coded symbol is innowativ

both receivers, but it is already part of the common knowsedg
space. For instance, whevi = 2 we can have the following

The probability of a coded symbol being innovative &y,, situation. Before receiving a new coded symh®j,hask; =

given that is also innovative to the common knowledge dfs;} and R, has K, = {s»}, thereforK; N K, = (). This is

both receivers is represented by statg, 1,0), i.e., each receiver has one dof

and they share no common knowledge. In the next time slot, a

new coded symbol is transmitted that is a linear combination

of s; andss. The knowledge of both receivers increases by one
once this coded symbol is received, while the common part is
increased by sincedim (K7 N K») = dim (s1, $2) = 2. This

(11) State is represented 1, 2, 2).

P(EE NER UZ)
= 1-[P(Ex,NEK,)+P(Ex, N EY)+ P(Ex, N ER)]
= P(Ex,)— P(E} N Ex,).
Taking into consideration (7) and (8), the final result isegiv
by
P(EE NER UZ)

1—q M+te

P(Ex, NEx, NE (k)
=P(Fx, NEx,NEc)— P(Fx, N Ex, N Ex,uK,)
P(Ex,|Ex,NEc)P(Ek,|Ec)P(Ec)-
—PEr,NEg,NEK,uK,)
=P(Fk,|Ec)P(Ex, N Ec) — P(Ex, N Ex, N Ex,uk,)-

_ PEg, N Bo) 1= gttt

P(EKalEC)_ P(Ec) - 1— q71\4+c

The probability P(Ex, N Ex, N ER k) is obtained by
combining (6) and (10).

P(Ek, NEx, N EE uK,)
(1_q—M+c+da ) (1_ q—M+c+db)
(- g—M+e)

The probability that a coded symbol is innovative with regpe
both to K, and to K, UK, is equivalent to the probability that

.(10)

(1_ q_M+C+da+db) )

C. The case of one receiver

Suppose now that the source wants to s@rdinforma-
tion symbols to a receiver. A similar model Markov model,
focusing on average decoding delay, is studied in [13]. The

is innovative with respect td(,, K, and K, U K, yielding
P(Ek, N Ex,uk,)

transitions fromi; to statei} are given by the following two
cases:

i} = i1: the coded symbol suffers an erasure or the coded

= P(EKamEKmeKaUKb) :(1— q7M+C+da+db).(12) °
symbol is received but it does not add a new dof to the
This concludes the proof. = knowledge of the receiver.
Thus, we can compute the probability distribution of the , ;/ =i, + 1: a coded symbol is received and the receiver
decoding delay (4). But first let us provide some intuition  gets a new dof.
on the transition probabilities for each stdig, is, ¢) to state The associated transition probabilities are given by
(¢},145, ") given by the following7 cases: )
. . . . . . €1+(1—€1)P(E?(z UZ), if 2/1:7,1
1) iy = i1, ib = ia, ¢ = c this case includes the P )— (i) :{ (1—e)P(E UZI) if i =iy 41
events that (i) both channels induce erasures, (ii) one ! o ’ e
channel induces erasure and the receiver corresponding
to the other channel gets a coded symbol that does not = {
increase the dofs of its knowledge or was encoded with
all zero coefficients, or (iii) the coded symbol is nofAs in the general case, the probabili{D < k) is given
innovative for both receivers or was encoded with ably the elemenip; (k) from TX, whereA = M + 1. The
zero coefficients. (M + 1)-th state is associated with state= M and the first

2) iy =i+ 1,4, =iz + 1, ¢ = ¢+ 1: both receivers state is associated to state= 0.

€1 + (1 — El)q_M+i_1, if ’Lll =10
(1—e)(1 — g MFi) if 4) =iy + 1.



V. INSIGHTS AND PRACTICAL IMPLICATIONS For a scenario with higher erasure probability, Figure 4(b)
Having derived analytical expressions for the delay distfhows that RLNC outperforms ARQ when done in fields as
bution of RLNC, we are now ready to discuss some of tHgnall asGF(2%). LT codes and the scheduling scheme are
insights they offer. To this end, we compare the decodingydeloutperformed by RLNC.
of RLNC with three well established transmission schemes:
o ARQ: The sender will transmit every symbol, whose
reception is not acknowledged by each receiver. Thi
scheme is known to achieve optimal throughput and min
imum delay over the erasure channel with one receive
(see [19]).
o LT codes This class of rateless codes is well known to
ensure reliability and optimum throughput over erasur:
channels (see [25]). Feedback is only used for acknow

0.75

edging the successful reception of all information sym L B GF)

bols. The encoder performs combinations of informatior 0.5 ¥ GF@)

symbols using an appropriate degree distribution in orde —~—GF?)

to minimize the number of redundant code symbols +GF)

Usually, the degree is chosen from a robust solitol

distribution, which requires two additional parameters tc 0.25 *-GF(?)

be set, namely a constantyust < 1, and a bound on HARQ

the decoding failure probability [26]. “©-round robin
« Round robin: This mechanism is well known to yield op- E£LT codes

timum th_roughput in_ broadcast scenarios [1_1_] [27], whert 9_0 12 14 16 18 20

the receivers experience the same probability of erasur Delay [Tlme S|OtS]

It is a scheduling scheme with minimalistic feedback,
where the source sends the information symbols in round-
robin fashion until the receivers announce the receptio

(@) ¢ = 0.05

of all M information symbols. 1
The numerical results for these three techniques were o P CrE
tained through simulation. For the ARQ scheme, the sourc *GF(2)
sends the same information symbol until it receives ACK: ——GF()

of successful reception from all the receivers. In the cas 0.75

of the LT codes we use the robust soliton distribution, witt “+GF@)
const = 0.01 andé = 0.7. As our analysis focuses on small *GF(?)
values of M, the performance of LT codes is not sensitive tcLL = ARQ

the values ofconst and . The round robin experiences the O 05 -© round robin
same minimalistic feedback as our model by only acknowl 2T codes

edging the correctly received information symbols at a# th
receivers. Using these reference systems as a benchmark
the delay performance of RLNC, we now discuss the tw« 0.25
receiver case in detail.

A. Two receivers

We characterize the delay distribution of RLNC by mean: 9.0 ' 12 14 16 18
of the transition probability matrix defined in (4). The ays$ Delay [Time SlOtS]
is carried out for different field sizes, erasure probabsgiand
number of information symbols.

Field size: In order to study the effect of the field size, werig. 4: The effect of the field size in the two-receiver casereHwe
assume that the channels have identical erasure probabiltive M = 10, ¢ = 0.05 (a), ¢ = 0.2 (b) and various field sizes.

The number of transmitted information symbols is fixed to

10 and we vary the field size fronGF(2) to GF(28). For field sizes larger thaGF(2*), the delay performance

A comparison with ARQ, round robin scheduling and LTs similar, as evidenced by both figures. Thus, in the foltayvi
codes is also included. For the case of a channel with smak take GF(2%) as a representative for higher fields. We
erasure probability (equal %.05), the findings are shown in conclude from here that foGF(2%) and a broadcast sce-
Figure 4(a), where it is possible to see that RLNQ3#(24) nario with two receivers, RLNC outperforms all the other
outperforms ARQ, and RLNC oveGF(2) outperforms LT transmission schemes. In particul&@F(2) performs better
codes. than LT codes and round robin. Moreover, as the erasure

(b) e =0.2



probability increases, the minimum field size under whict

RLNC outperforms ARQ becomes smaller. 0.25 ——
e
1 ey
> 0.2 ol
3 |_[ciey
a
0.8 «5 0.15" 1
0.6 H¢-0.05, GF(2) | -% 0.1 1
LL
&) ©-e=0.1, GF(2) 8
O “¥-£=0.2, GF(2) 5
0.4 =03, GF(2) || 0.05¢ 1
I} £=0.05, GF(%)
0.2 ©&=0.1, GF(%) || 0
“¥-£=0.2, GF(9) 10111213141516 1718 19
=03, GF(H Delay [Time Slots]
i4 16 18 (@) RLNC with various field sizes.
Delay[Time Slots]
0.25 ‘ :
Fig. 5: The effect of erasure probability in the two-receigase with DGF(24)
M = 10, fixed field sizes and various erasure probabilities.
0 : ARQ
Erasure probability: The effect of erasure probability is % ' i rou_nd
illustrated in Figure 5. We fix the number of information sym- @© robin
bols (M = 10) and the field sizeGF(2) and GF(2%)), and O 0.1 .LT codes| |

vary the erasure probabilityd = 0.05, ¢ = 0.1, e = 0.2 and

e = 0.3). The channels have identical erasure probabilities. W
present onlyGF(2) andGF(2%), because foGF(q > 2%) the
results are similar t&zF(2*). In this case, by increasing the
erasure probability, the average delay increases withghees
proportion for GF(2) and for GF(2%). For instance, if we
consider the case d&F(2), the average delay for = 0.05

is 12.68 and fore = 0.3 we get18.40, which implies an
increase oft5%. The same analysis fa&F (24) yields 10.96
and 15.77, respectively corresponding to an increaself;.
Hence, for two receivers, the result shows that the effect ¢
erasures and field size are completely separable.

Probability of
o

0.0 1

il

1011121314 15161718 19
Delay [Time Slots]

(b) GF(2*), ARQ, round robin and LT codes

B. One-receiver

Fig. 6: The effect of the field size in the one-receiver casthwi

In order to study the effect of field size in delay when usingJ 70 e =02

RLNC, we fix the number of information symbol8/ = 10,
and erasure probability, = 0.2, while varying the field size.
From our illustrations in Figure 6(a) we can see tiedf(2)
induces heavy tails. The average delay @F(2) is 14.31
time-slots and forGF(2*) and GF(28) is 13.5 time-slots. We now analyze the effect of the number of information
We compare other transmission schemes vl (2?), as symbols to be encoded for various field sizes. The probwbilit
shown in Figure 6(b). The results for ARQ aiF(2*) are that a receiver obtaind/ linearly independent combinations
. . . . M—1
similar. Round robin scheduling is outperformed Gy (2). . L -
LT codes provide the worst performance for this scenarid)hBofrom M received coded symbols is given bf. = HO (-
the round robin mechanism and the LT codes induce heavier : . . L=
tails than those observed for small field sizes. RLNC ovér ) [11], whereq is the field size. Byilchanglng variables
GF(2) thus offers superior worst-case delay guarantees thaid callingu = j — M we have:P = H (1 —¢%). Note
the two competing schemes. w—=_M

C. Number of information symbols



that for a given field size, if « is below a certain valugy* Algorithm 1 Number of Time Slots for an Experiment

is negligible when compared tb Hence, when we increase Data: erasure probabilityef, number of information sym-
the number of information symbols, i.e. the valueldf, the bols (M), number of receiversX)

probability of havingM linearly independent combinations Result number of time slotst

from M coded information symbols remains the same. For Sum « 0

GF(q > 2?), we may safely neglect the effect of the number TotalSum « 0

of information symbols in the probability of obtaining lin- t—M-1

early independent combinations frold coded symbols. For ~ while T'otalSum < 0.99 do

the decoding delay in noisy channels, the erasure probabili ¢« ¢+ 1 Y
plays the central role on the choice of a suitablein order Sum «— Sum+ (1) - (1 —e)M e

to ensure, for example, that alll information symbols are Total Sum «— Sum™

delivered on time when the application has strict deadlines end while

V. BRUTE-FORCEANALYSIS
The next natural step would be to extend the delay analy&igomial distribution to compute the total probability dfet
of Section Il to the case ofV > 2 receivers. Given the €/asure patterns with up t& erasures, specifically?, =
mathematical difficulty of characterizing the requirednsa Z < Nt > (1— )Ntk . ¢h The value ofH for which
tion probabilities and hence obtain the delay distributadn = \Nt—h
network coding for more than two receivers, we propose ahis probability exceeds.9 is denoted ag{,,,,... It follows that

alternative brute-force approach. the adequate number of erasure patterns for experimemtatio
Hpao
. . N-t
is given by A = .
A. Methodology g y hZ:O (N-th)

We start by fixing the number of receivelg the number of
information symbols to be combineW, the field sizeqg and B. Experiments

the erasure probability of each channel. Based on the values The proposed approach is obviously demanding from a
of these parameters, erasure pattern; are generatedting te%omputational point of view. In our experiments, we used
pUrposes. Their length must *?e sufflc_|ent to allow fpr aI_I a cluster of computers to obtain results for field sizes up
receivers to recover all of the information symbols withthig, GF(2%) and a limited number of receivers. The cluster

probgblhty. It is useful to represent eachTerasure pa@esna distributes the computing effort among several independen
matrix of the formep = [ep, |ep,|...|ep, |" , whereep, is @ 05 gince the number of encodings is very large, we assign
_bmary vector of lengtiz. Ea_ch element of the vectqr 'nqmate%dependent threads for the same experiment. The number of
!f a coded symk_)ol transmitted at the_ porrespond|ng time slatormation symbols to be coded was kept deliberately small
is erased or arrives correctly at receiver _ _ in our examples X/ = 2), however larger values o/ are

_In a second step, we generate all possible linear combiRgssqihje depending on the computational power of the aluste
tions of the A7 |nform§t|on symbols that can be generateqj i, ayailable time. Recall that the delay is measured in
by the encoder fort_ time SIOt_S' For egch erasure pattern,gqp, experiment for every set of encodings and every raceive
we try ou_t_all possible encodings, Wh'c_h are _er_ase_d at ﬂ?ﬁe delay histogram is then obtained by counting the number
given p05|t|0ns and decodeq by Gaussian Ellmlnatlon._T}a? coded symbols that yields a particular delay value. Coded
delay is measured by counting the number of slots until &l{,,,,s under which the receivers are unable to decodeeall th

information symbols are decoded by all receivers. To redug®, mation symbols are also accounted for. The probabilit
the computational effort, we adapt the number of time slots by decoding failure is given by

the parameter values of each experiment, such that atléast

coded symbols are received with probability larger thafk. — 13,
The minimum number of time slots required is computed using P(D) = P, Z P(DIAN) - P(Ax), (13)
Algorithm 1. A=t

For each erasure probability we run a number of expemith P(Ay) = (1 — )Nt . " vh = 0,1...H and

ments (one for each erasure pattern) and compute the méAD|Ay) = (1 — %), whereG), is the number of encodings
and standard deviation of the decoding delay. The lengtmat guarantees successful decoding under the erasuesrpatt
of the erasure pattern is determined using Algorithm 1. Ty, andG = max) G .

ensure the statistical significance of our results, we must r Comparing with other existing methods, the brute-force is
a sufficient number of experiments depending on the valtlee most well suited for our metric of interest. Whereas for
of the erasure probability. Lell be the number of erasuresa given set of input parameters the brute-force methodology
in a specific erasure pattern. We start by settiig= 0 generates all possible linear combinations of informasipm-

and compute the probability of occurrence for this erasubmls, the Monte Carlo method chooses a smaller number of
pattern. The procedure is repeated by incrementingt each linear combinations at random. The accuracy of analysis for
step until the total probability of the thus obtained erasuiMonte Carlo simulation depends on the choice of the random
pattern is higher tha.9. This can be validated using thefunction we choose to produce the linear combinations and
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Since we are trying all possible encodings, we obtain the

0.7 : cumulative distribution function (CDF) for the delay, show
DGF(Z) in Figure 7(b). Both histogram and cumulative function edve
0.6 .GF(ZZ) that once agairGF(2) induces a heavy tail and the perfor-
o T mance ofGF(2?) is close to that oflGF(2%). Using equation
@ ( ) (13), we can compute the probability of decoding failure for
8 0.5 .GF(24) all field sizes. It varies fron.032 to 0.097.
— The brute-force approach can be used also to validate the
©0.4 analytical method proposed in Section Ill. For the case of
2 N =2, M =2, ¢ = 0.05 and GF(2*) we must to run37
3 0.3 | experiments. Figure 8 shows that the analytical method and
_g ' o _ the brute-force approach yield the same delay distribution
o
g 0.2
1
0.1 I 1
0.8
0
1 2 3 4
Delay [Time Slots] 0.8 —Markov Model
(a) Probability of Delay w === Brute—Force
a
©)
1 0.4
0.8 0.2
! 0 : ‘ :
, 06 2 3 4 5
a Delay [Time Slots]
)
0.4 | Fig. 8: Brute-Force vs. Analytic Model faV = 2, M = 2, ¢ = 0.05,
=GF(2) GF(2").
BGF(2)
0.2 f
*GF(?) VI. CONCLUSIONS
'E'GF(24) We considered the delay behavior of network coding which
is key to the design of any system subject to strict message
D % Ti S:? t deadlines. By determining the delay distribution of RLNC fo
elay [ Ime SIo S] the case of two receivers, we were able to identify which
(b) CDF parameter settings can meet specific worst-case guarantees

The benefits of RLNC in the broadcast scenario of interest
were further highlighted by comparing its delay distributio
that of three other transmission schemes. Perhaps the most i
portant insights are that network coding for two receivessro
on the repetition of experiments. Consequently, even if @F(24) outperforms ARQ and tha&F(2), although simple
requires more resources, the brute-force method should tg@mplement, induces a heavy tail in the delay distribution
addressed for a more precise analysis. As an option for heavyyy analysis was given for the case of one-hop communi-
computational situations, Monte Carlo method may be usggtion, but the insights we obtained can be translated t@mor
instead. complex networks. In fact, the sender can be either theraigi
As an example, Figure 7 shows the results for the caseg¥furce at the edge of the network or an intermediate node
N = 3 receivers,M = 2 ande = 0.05 and various field sizes somewhere in the core. Likewise, the receivers can be either
GF(2) up to GF(2*). The number of experiments used in théntermediate nodes in the network or the final destination at
study is79. the edge of the network. On the other hand, the information
The results provided in Figure 7 were obtained for erasusgmbols as defined in our problem statement could in fact be
patterns that represent 97.5% of all possible occurrencesded symbols if the sender acts as an intermediate node.

Fig. 7: Brute-Force Analysis foN = 3, M = 2, ¢ = 0.05.
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What does not change is the fact that computing the delpy] A. Eryilmaz, A. Ozdaglar, and M. Médard, “On delay perhance gains
distribution of network coding is a high-dimensional and

computationally demanding problem. Since we are integestg,
in guidelines for system design, the proposed methods based

on a Markov chain model and a brute-force approach could be
used in combination to seek meaningful heuristics and bsungl;
for the design. In particular, a hybrid search would be able t

select the most relevant erasure patterns while capitglian

the Markov chain to take the impact of the field size intBlA']
account. Devising such strategies is part of our ongoincgkwor

APPENDIX

The proof of Lemma 1 is given in the following.

[15]

[16]

Proof: The number of valid states is the solution of

a difference equation whedVv 2 and M > 2, and

we denote it byA(M,2). By considering the number of

valid states forM = 2,3,4,5,6 information symbols, we

[17]

noticed that they follow a difference equation of the formt &l

A(M+5,2) = A(M+4,2)—4A(M+3,2)+6A(M+2,2)—

4A(M +1,2) + A(M,2). The characteristic polynomial for [19]

this difference equation is* — 422 + 622 —4z+1 = 0, which

has only one root; = 1, of multiplicity 4. Therefore, the
linear recurrence equation with constant coefficientsgdke
form

A(6,2) = c1 + 20 + ¢30% + 463, (14)

with 6 € 0...3. From (14) we finde; = 10, ¢ = 4, ¢3 =
2andcy = ¢

number of valid states foM = 2,3,4,5,6. By substituting

the coefficients andd = M — 2 in expression (14) we get

A(M,2) =10+ 3L (M —2)+2(M —2)*+ (M —2)*, which
is the same with (2).

This concludes the proof. [ |
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